K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2016

2S = \(\frac{2}{1.3}+\frac{2}{3.5}+....+\frac{2}{99.101}=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{101}\)

\(2S=1-\frac{1}{101}\)

2S + 1/101 = \(1-\frac{1}{101}+\frac{1}{101}=1\)

28 tháng 7 2018

a, S= 1/1*2 + 1/2*3 + 1/3*4 +...+1/99*100
    S= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/99 - 1/100
    S= 1/1 - 1/100
    S= 100/100 - 1/100
    S= 99/100

b, S= 1/1*3 + 1/3*5 + 1/5*7 +...+1/99*101
    S= 1/2* (2/1*3 + 2/3*5 + 2/5*7 +...+ 2/99*101)
    S= 1/2* (1/1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 +...+ 1/99 - 1/101)
    S= 1/2* (1/1 - 1/101)
    S= 1/2* (101/101 - 1/101)
    S= 1/2* 100/101
    S= 50/101
Chúc bạn học tốt nha

13 tháng 5 2016

\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+....+\frac{2}{99\cdot101}\)

\(\frac{2}{1\cdot3}=\frac{3-1}{1\cdot3}=\frac{3}{1\cdot3}-\frac{1}{1\cdot3}=\frac{1}{1}-\frac{1}{3}=1-\frac{1}{3}\)

\(\frac{2}{3\cdot5}=\frac{5-3}{3\cdot5}=\frac{5}{3\cdot5}-\frac{3}{3\cdot5}=\frac{1}{3}-\frac{1}{5}\)

....

\(\frac{2}{99\cdot101}=\frac{101-99}{99\cdot101}=\frac{101}{99\cdot101}-\frac{99}{99\cdot101}=\frac{1}{99}-\frac{1}{101}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)

 

 

13 tháng 5 2016

\(\frac{5}{1\cdot3}+\frac{5}{3\cdot5}+\frac{5}{5\cdot7}+...+\frac{5}{99\cdot101}\)

=\(\frac{5}{2}\cdot\frac{2}{1\cdot3}+\frac{5}{2}\cdot\frac{2}{3\cdot5}+\frac{5}{2}\cdot\frac{2}{5\cdot7}+...+\frac{5}{2}\cdot\frac{2}{99\cdot101}\)

=\(\frac{5}{2}\cdot\left[\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{99\cdot101}\right]\)

=\(\frac{5}{2}\cdot\left[1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right]\)

=\(\frac{5}{2}\cdot\left(1-\frac{1}{101}\right)\)

=\(\frac{5}{2}\cdot\frac{100}{101}\)

\(=\frac{250}{101}\)

11 tháng 9 2018

\(6S=1.3.6+3.5.6+5.7.6+...+99.101.6\)

\(6S=1.3.\left(5+1\right)+3.5.\left(7-1\right)+5.7.\left(9-3\right)+...+99.101.\left(103-97\right)\)

\(6S=1.3.1+1.3.5-1.3.5+3.5.7-3.5.7+5.7.9-...-97.99.101+99.101.103\)

\(6S=1.3+99.101.103\Rightarrow\left(3+99.101.103\right):6\)

25 tháng 9 2018

sai rồi cậu oi

4 tháng 10 2022

ai bt tự làm

 

15 tháng 4 2023

ngu tự chịu

25 tháng 12 2015

có dạng này nhưng là số chẵn nhân chãn

27 tháng 12 2015

2S=2/1.3+2/3.5+....+2/99.101

2S=1-1/3+1/3-1/5+....+1/99-1/101

2S=1-1/101

2S+1/101=1-1/101+1/101=1

Nho tick nha

27 tháng 12 2015

\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(S=1-\frac{1}{101}=\frac{100}{101}\)

\(2S+\frac{1}{101}=\frac{100}{101}\)

\(S=2.\frac{100}{101}+\frac{1}{101}\)

\(\Rightarrow S=\frac{201}{101}\)

****

9 tháng 1 2022

\(S=1+\dfrac{1}{2}+\dfrac{1}{2^3}+\dfrac{1}{2^5}+...+\dfrac{1}{2^{101}}\)

\(\Rightarrow S-1=\dfrac{1}{2}+\dfrac{1}{2^3}+\dfrac{1}{2^5}+...+\dfrac{1}{2^{101}}\)

\(\Rightarrow\dfrac{1}{4}\left(S-1\right)=\dfrac{1}{2^3}+\dfrac{1}{2^5}+\dfrac{1}{2^7}+...+\dfrac{1}{2^{103}}\)

\(\Rightarrow\dfrac{1}{4}\left(S-1\right)-\left(S-1\right)=\dfrac{1}{2^3}+\dfrac{1}{2^5}+\dfrac{1}{2^7}+...+\dfrac{1}{2^{103}}-\dfrac{1}{2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{101}}\)

\(\Rightarrow\dfrac{3}{4}\left(S-1\right)=\dfrac{1}{2^{103}}\)

\(\Rightarrow S-1=\dfrac{1}{2^{103}}:\dfrac{3}{4}\)

\(\Rightarrow S-1=\dfrac{4}{3.2^{103}}\)

\(\Rightarrow S=\dfrac{4}{3.2^{103}}+1\)

9 tháng 1 2022

S=1+12+123+125+...+12101S=1+12+123+125+...+12101

⇒S−1=12+123+125+...+12101⇒S−1=12+123+125+...+12101

⇒14(S−1)=123+125+127+...+12103⇒14(S−1)=123+125+127+...+12103

⇒14(S−1)−(S−1)=123+125+127+...+12103−12−123−...−12101⇒14(S−1)−(S−1)=123+125+127+...+12103−12−123−...−12101

⇒34(S−1)=12103⇒34(S−1)=12103

⇒S−1=12103:34⇒S−1=12103:34

⇒S−1=43.2103⇒S−1=43.2103

⇒S=43.2103+1