3.4+3.5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{1}{3.4}+\frac{7}{3.4}+\frac{2}{3.5}+\frac{14}{5.9}-\frac{4}{9.13}=\frac{8}{3.4}+\frac{2}{3.5}+\frac{2}{9}\left(\frac{7}{5}-\frac{2}{13}\right)\)
=> \(M=\frac{2}{3}+\frac{2}{3.5}+\frac{2}{9}.\frac{81}{5.13}=\frac{2}{3}\left(1+\frac{1}{5}\right)+\frac{18}{5.13}\)
=> \(M=\frac{2}{3}.\frac{6}{5}+\frac{18}{5.13}=\frac{4}{5}+\frac{18}{5.13}=\frac{2}{5}\left(2+\frac{9}{13}\right)=\frac{2}{5}.\frac{35}{13}\)
=> \(M=\frac{14}{13}\)
\(A=1\cdot2+2\cdot3+...+151\cdot152\)
\(=1\left(1+1\right)+2\left(1+2\right)+...+151\left(1+151\right)\)
\(=\left(1+2+3+...+151\right)+\left(1^2+2^2+...+151^2\right)\)
\(=\dfrac{151\left(151+1\right)}{2}+\dfrac{151\left(151+1\right)\left(2\cdot151+1\right)}{6}\)
\(=151\cdot76+\dfrac{151\cdot152\cdot303}{6}\)
\(=151\cdot76+151\cdot7676=1170552\)
\(C=2\cdot4+4\cdot6+...+2024\cdot2026\)
\(=2\cdot2\left(1\cdot2+2\cdot3+...+1012\cdot1013\right)\)
\(=4\left[1\left(1+1\right)+2\left(1+2\right)+...+1012\left(1+1012\right)\right]\)
\(=4\left[\left(1+2+...+1012\right)+\left(1^2+2^2+...+1012^2\right)\right]\)
\(=4\left[1012\cdot\dfrac{1013}{2}+\dfrac{1012\left(1012+1\right)\left(2\cdot1012+1\right)}{6}\right]\)
\(=4\left[506\cdot1013+345990150\right]\)
\(=1386010912\)
\(M=1^2+2^2+...+2024^2\)
\(=\dfrac{2024\left(2024+1\right)\cdot\left(2\cdot2024+1\right)}{6}\)
\(=2024\cdot2025\cdot\dfrac{4049}{6}\)
=2765871900
\(N=1^3+2^3+...+100^3\)
\(=\left(1+2+3+...+100\right)^2\)
\(=\left[\dfrac{100\left(100+1\right)}{2}\right]^2\)
\(=\left[50\cdot101\right]^2=5050^2\)
\(Q=1^3+2^3+...+2024^3\)
\(=\left(1+2+3+...+2024\right)^2\)
\(=\left[\dfrac{2024\left(2024+1\right)}{2}\right]^2\)
\(=\left[1012\left(2024+1\right)\right]^2\)
\(=2049300^2\)
\(\Leftrightarrow2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{47}-\frac{1}{49}\right)+4x=7.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}\right)\)\(\Leftrightarrow2.\left(1-\frac{1}{49}\right)+4x=7.\left(1-\frac{1}{99}\right)\)
\(\Leftrightarrow2.\frac{48}{49}+4x=7.\frac{98}{99}\)
\(\Leftrightarrow\frac{96}{49}+4x=\frac{686}{99}\)
\(\Leftrightarrow4x=\frac{686}{99}-\frac{96}{49}\)
\(\Leftrightarrow4x=4,970109256\)
\(\Leftrightarrow x=4,970109256:4\)
\(\Leftrightarrow x=1,242527314\)
B = 1.2+2.3+3.4+...+99.100
B=1.100
B=100
C=1.3+2.4+3.5+4.6+...+9.11
C=1.(2+1)+2.(3+1)+3.(4+1)+4.(5+1)+...+9.(10+1)
C=1.2+1+2.3+1+3.4+1+4.5+1+...+9.10+1
C=(1.2+2.3+3.3+4.5+...+9.10)+(1+1+1+1+..+1)
C=1.10+10
C=10+10
C=20
a) B = 1.2+2.3+3.4+..+99.100
=>3B=1.2.3+2.3.3+3.4.3+...+99.100.3
3B = 1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3B = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5-2.3.4+...+99.100.101-98.99.100
3B = (1.2.3+2.3.4+3.4.5+..+99.100.101) - (1.2.3+2.3.4+...+98.99.100)
3B = 99.100.101
\(B=\frac{99.100.101}{3}=333300\)
b) C = 1.3+2.4+3.5+4.6+...+9.11
C = (2-1).(2+1)+(3-1).(3+1) + (4-1).(4+1)+(5-1).(5+1)+...+(10-1).(10+1)
C = 22 - 1 + 32 - 1 + 42 - 1 + 52 - 1 +...+102 - 1
C = (22+32+42+52+...+102) -(1+1+...+1)
...
A = 1.2. + 2.3 + 3.4 + ... + 99.100
3A = 1.2.3 + 2.3.(4-1) + ... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 2.3.1 + ... + 99.100.101 - 99.100.98
3A = 99.100.101
3A = 999900
A = 333300
Ta có
3.4+3.5=3.(4+5)=3.9=27
3.4+3.5
=12+15
=27