K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2018

22 tháng 7 2020

Gọi gđ của ED và HA là O . Ta có:

tam giác MEH cân => góc HEM=MHE

tam giác OEH cân => góc OEH=OHE

mà góc OHE+MHE=90 độ

=> góc HEM+OEH=90 độ

=> EM vuông góc với ED

       DN vuông góc với ED => DEMN là hình thang vuông

22 tháng 7 2020

@Mai Anh : chép mạng nhớ ghi nguồn nhé :>

30 tháng 12 2021

giải giúp mình với ạ mình đang cần gấppppp

 

30 tháng 12 2021

a: Xét tứ giác AEHF có 

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

Suy ra: AH=FE

a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có 

\(\widehat{HAB}=\widehat{HCA}\)

Do đó: ΔAHB\(\sim\)ΔCHA

b: BM/AN=HB/HA

mà HB/HA=AB/CA

nên BM/AN=AB/CA

Xét ΔABM và ΔCAN có

BM/AN=AB/CA

\(\widehat{ABM}=\widehat{CAN}\)

Do đó: ΔABM\(\sim\)ΔCAN

a) Xét tứ giác AEHF có 

\(\widehat{FAE}=90^0\)

\(\widehat{AFH}=90^0\)

\(\widehat{AEH}=90^0\)

Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: ΔEHB vuông tại E(gt)

mà EN là đường trung tuyến ứng với cạnh huyền HB(N là trung điểm của HB)

nên \(EN=\dfrac{HB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

24 tháng 7 2020

A B C H M N E D O

Bài làm

a) Vì \(\widehat{BAC}=\widehat{AEH}=\widehat{ADH}=90^0\)

=> tứ giác AEDH là hình chữ nhật.

=> Hai đường chéo AH và ED cắt nhau tại trung điểm mỗi đường. Mà AH = ED ( tính chất đường chéo của hình vuông )

Gọi giao điểm của AH và ED là O

=> Tam giác OHD cân tại O.

=> \(\widehat{AHD}=\widehat{EDH}\)                    (1)

Mà tam giác DHC vuông tại D

Mà DN là đường trung tuyến ( do N là trung điểm HC )

=> DN = HN = HC

=> Tam giác DHN cân tại N

=> \(\widehat{DHN}=\widehat{HDN}\)( hai góc ở đáy tam giác cân )   (2)

Cộng (1) vào (2), ta được: \(\widehat{AHD}+\widehat{DHN}=\widehat{EDH}+\widehat{HDN}\)

=> \(\widehat{AHC}=\widehat{EDN}\)

hay \(90^0=\widehat{EDN}\)                  

=> DN vuông góc với ED                    (3)

Vì tam giác OEH cân tại O ( cmt )

=> \(\widehat{OEH}=\widehat{OHE}\)( hai góc ở đáy tam giác cân )                    (4)

Mà tam giác BEH vuông tại H

Mà EM là trung tuyến ( Do N là trung điểm BH )

=> EM = BM = MH 

=> Tam giác EMH cân tại M.

=> \(\widehat{MEH}=\widehat{MHE}\)                (5) 

Cộng (4) và (5) ta được: \(\widehat{OEH}+\widehat{MEH}=\widehat{OHE}+\widehat{MHE}\)

=> \(\widehat{OEM}=\widehat{OHM}\)

hoặc \(\widehat{DEM}=\widehat{AHB}\)

hay \(\widehat{DEM}=90^0\)

=> ME vuông góc với ED (6)

Từ (3) và (6) => ME // DN

=> DEMN là hình thang 

Mà \(\widehat{DEM}=90^0\)( cmg )

=> Hình thang DEMN là hình thang vuông ( đpcm )

22 tháng 10 2023

loading...   a) Tứ giác ADHE có:

∠AEH = ∠ADH = ∠HAE = 90⁰ (gt)

⇒ ADHE là hình chữ nhật

⇒ AH = DE

b) BHD vuông tại D

I là trung điểm của HB (gt)

⇒ ID = IH = BH : 2

⇒ ∆IDH cân tại I

⇒ ∠IDH = ∠IHD

⇒ ∠HID = 180⁰ - (∠IDH + ∠IHD)

= 180⁰ - 2∠IHD (1)

∆CEH vuông tại E

K là trung điểm HC (gt)

⇒ KE = KC = HC : 2

⇒ ∆KEC cân tại K

⇒ ∠KEC = ∠KCE

⇒ ∠CKE = 180⁰ - (∠KEC + ∠KCE)

= 180⁰ - 2∠KEC (2)

Do HD ⊥ AB (gt)

AC ⊥ AB (gt)

⇒ HD // AC

⇒ ∠IHD = ∠KCE (đồng vị)

⇒ 2∠IHD = 2∠KCE (3)

Từ (1), (2) và (3) ⇒ ∠CKE = ∠HID

Mà ∠CKE và ∠HID là hai góc đồng vị

⇒ DI // KE