Cho tam giác ABC vuông tại A, kẻ đường cao AH. Gọi M, N lần lượt là trung điểm của HB, HA. Chứng minh AM vuông góc với CN.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi gđ của ED và HA là O . Ta có:
tam giác MEH cân => góc HEM=MHE
tam giác OEH cân => góc OEH=OHE
mà góc OHE+MHE=90 độ
=> góc HEM+OEH=90 độ
=> EM vuông góc với ED
DN vuông góc với ED => DEMN là hình thang vuông
a: Xét tứ giác AEHF có
\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)
Do đó: AEHF là hình chữ nhật
Suy ra: AH=FE
a: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{HAB}=\widehat{HCA}\)
Do đó: ΔAHB\(\sim\)ΔCHA
b: BM/AN=HB/HA
mà HB/HA=AB/CA
nên BM/AN=AB/CA
Xét ΔABM và ΔCAN có
BM/AN=AB/CA
\(\widehat{ABM}=\widehat{CAN}\)
Do đó: ΔABM\(\sim\)ΔCAN
a) Xét tứ giác AEHF có
\(\widehat{FAE}=90^0\)
\(\widehat{AFH}=90^0\)
\(\widehat{AEH}=90^0\)
Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Ta có: ΔEHB vuông tại E(gt)
mà EN là đường trung tuyến ứng với cạnh huyền HB(N là trung điểm của HB)
nên \(EN=\dfrac{HB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
Bài làm
a) Vì \(\widehat{BAC}=\widehat{AEH}=\widehat{ADH}=90^0\)
=> tứ giác AEDH là hình chữ nhật.
=> Hai đường chéo AH và ED cắt nhau tại trung điểm mỗi đường. Mà AH = ED ( tính chất đường chéo của hình vuông )
Gọi giao điểm của AH và ED là O
=> Tam giác OHD cân tại O.
=> \(\widehat{AHD}=\widehat{EDH}\) (1)
Mà tam giác DHC vuông tại D
Mà DN là đường trung tuyến ( do N là trung điểm HC )
=> DN = HN = HC
=> Tam giác DHN cân tại N
=> \(\widehat{DHN}=\widehat{HDN}\)( hai góc ở đáy tam giác cân ) (2)
Cộng (1) vào (2), ta được: \(\widehat{AHD}+\widehat{DHN}=\widehat{EDH}+\widehat{HDN}\)
=> \(\widehat{AHC}=\widehat{EDN}\)
hay \(90^0=\widehat{EDN}\)
=> DN vuông góc với ED (3)
Vì tam giác OEH cân tại O ( cmt )
=> \(\widehat{OEH}=\widehat{OHE}\)( hai góc ở đáy tam giác cân ) (4)
Mà tam giác BEH vuông tại H
Mà EM là trung tuyến ( Do N là trung điểm BH )
=> EM = BM = MH
=> Tam giác EMH cân tại M.
=> \(\widehat{MEH}=\widehat{MHE}\) (5)
Cộng (4) và (5) ta được: \(\widehat{OEH}+\widehat{MEH}=\widehat{OHE}+\widehat{MHE}\)
=> \(\widehat{OEM}=\widehat{OHM}\)
hoặc \(\widehat{DEM}=\widehat{AHB}\)
hay \(\widehat{DEM}=90^0\)
=> ME vuông góc với ED (6)
Từ (3) và (6) => ME // DN
=> DEMN là hình thang
Mà \(\widehat{DEM}=90^0\)( cmg )
=> Hình thang DEMN là hình thang vuông ( đpcm )
a) Tứ giác ADHE có:
∠AEH = ∠ADH = ∠HAE = 90⁰ (gt)
⇒ ADHE là hình chữ nhật
⇒ AH = DE
b) BHD vuông tại D
I là trung điểm của HB (gt)
⇒ ID = IH = BH : 2
⇒ ∆IDH cân tại I
⇒ ∠IDH = ∠IHD
⇒ ∠HID = 180⁰ - (∠IDH + ∠IHD)
= 180⁰ - 2∠IHD (1)
∆CEH vuông tại E
K là trung điểm HC (gt)
⇒ KE = KC = HC : 2
⇒ ∆KEC cân tại K
⇒ ∠KEC = ∠KCE
⇒ ∠CKE = 180⁰ - (∠KEC + ∠KCE)
= 180⁰ - 2∠KEC (2)
Do HD ⊥ AB (gt)
AC ⊥ AB (gt)
⇒ HD // AC
⇒ ∠IHD = ∠KCE (đồng vị)
⇒ 2∠IHD = 2∠KCE (3)
Từ (1), (2) và (3) ⇒ ∠CKE = ∠HID
Mà ∠CKE và ∠HID là hai góc đồng vị
⇒ DI // KE