Cho tam giác ABC có AB = AC = 13 cm, BC = 10 cm. Tính độ dài đường trung tuyến AM của tam giác ABC.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: BM=CM=3cm
=>AM=4cm
c: Xét ΔHBC có
HM vừa là đường cao, vừa là trung tuyến
=>ΔHBC cân tại H
Tam giác ABC có AC=AB=13cm nên tam giác ABC cân tại A
=>đường trung tuyến của AM cũng là đường cao
=>AM \(\perp BC\)
Ta có MB=MC=1/2BC=1/2.10=5(cm)
Trong tam giác vuông AMB có góc vuông AMB=\(90^0\)
Áp dụng định lý Pitago ta có:
\(AB^2=AM^2+MB^2\)
=>\(AM^2=ÂB^2-MB^2\)
=\(13^2-5^2=169-25=144\)
Vậy AM=12 (cm)
a: XétΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: M là trung điểm của BC nên MB=MC=8cm
=>AM=6cm
a, Xét Δ ABM và Δ ACM, có :
AB = AC (gt)
AM là cạnh chung
MB = MC (M là trung điểm BC)
=> Δ ABM = Δ ACM (c.c.c)
b, Ta có : AB = AC (gt)
=> Δ ABC cân tại A
Ta có :
Δ ABC cân tại A
Mà AM là trung tuyến
=> AM là đường cao
=> AM ⊥ BC
c, Ta có :
M là trung điểm
=> BC = 2MB
=> 16 = 2MB
=> MB = 8 (cm)
Xét Δ AMB vuông tại M, có :
\(AB^2=AM^2+MB^2\)
=> \(10^2=AM^2+8^2\)
=> \(36=AM^2\)
=> AM = 6 (cm)
Cho tam giác ABC cân ở A, đường trung tuyến AM.
a) Chứng minh AM BC
b) Tính AM biết rằng AB cm BC cm 10 , 12
phần a dễ quá em tự giải nhé.
phần b: góc AMB = góc AMC (1) ( vì tam giác ABM = tam giác ACM)
Ta lại có : góc AMB + góc AMC = 180 độ (2) ( 2 góc kề bù )
từ (1) và (2) suy ra : góc AMB = góc AMC = 90 độ
Phần c. Áp dụng định lí Pytago cho tam giác vuông ABM tính ra AM = 12 cm
\(\Delta ABC\)có : AB2 + AC2 = (4,5)2 + 62 = 56,25 = (7,5)2 = BC2 nên\(\Delta ABC\)vuông tại A
=> Trung tuyến AM bằng nửa cạnh huyền BC và bằng : 7,5 : 2 = 3,75 (cm)
Chú ý AM là đường cao, từ đó dùng Định lý Pytago tính được AM = 12 cm.