P= 2+2^2+2^3...+2^118+2^119+2^120 CHIA HẾT CHO 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(A=2+2^2+2^3+2^4+...+2^{118}+2^{119}+2^{120}\)
\(\Rightarrow A=2\left(1+2^{ }+2^2\right)+2^4\left(1+2^{ }+2^2\right)+...+2^{118}\left(1+2^{ }+2^2\right)\)
\(\Rightarrow A=2.7+2^4.7+...+2^{118}.7\)
\(\Rightarrow A=7.\left(2+2^4+...+2^{118}\right)⋮7\)
\(\Rightarrow dpcm\)
Bài 2 :
\(...=23\left(78+22\right)-15=23.100-15=2300-15=2285\)
\(B=3+3^2+3^3+...+3^{118}+3^{119}+3^{120}\\ =\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\\ =3.\left(1+3+3^2\right)+3^4.\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\\ =\left(3+3^4+...+3^{118}\right).\left(1+3+3^2\right)\\ =\left(3+3^4+...+3^{118}\right).13⋮13\left(ĐPCM\right)\)
A = 3 + 32 + 34 + 35 + 36 + ..... +3117 + 3118 + 3119 + 3120
3A = 32 + 34 + 35 + 36 + ..... +3117 + 3118 + 3119 + 3120 + 3121
3A - A = ( 32 + 34 + 35 + 36 + ..... +3117 + 3118 + 3119 + 3120 + 3121 ) - ( 3 + 32 + 34 + 35 + 36 + ..... +3117 + 3118 + 3119 + 3120 )
2A = 3121 - 3
A = ( 3121 - 3 ) : 2 chia hết cho 2
Vậy A chia hết cho 2
A = 3 +32+33+34+35+36+...+3117+3118+3119+3120
A = (3+32) + (33+34) + (35+36)+ ...+ (3177+3118) + (3119+3120)
A= 3 . (1+3) + 33(1+3 )+ 37 ( 1+3 ) +...+3117 ( 1+3 ) + 3119 ( 1+3 )
A=3. 4 + 33 . 4 + 35 . 4 + ...+ 3119 . 4
A =4. ( 3+33 + 35 + ... + 3119 ) ⋮ 2
( vì trong tích trên có thừa số 4 , mà trong tích nếu có bất kì số nào đó chia hết cho a thì tích đó chia hết cho a . Vậy tích trên có chữ số 4 vì vậy tích đó chia hết cho 2 )
a)\(3^{n+2}-2^{n+2}+3^n-2^n=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.1-2^n.5=3^n.10-2^{n-1}.10=10\left(3^n-2^{n-1}\right)\)nên chia hết cho 10
b)\(9^{120}+9^{119}-9^{118}=9^{118}\left(9^2+9-1\right)=9^{118}.89\)
Suy ra chia hết cho 89
c)\(2^{100}+2^{99}+..+2+1=2^{99}\left(2+1\right)+...+\left(2+1\right)\)
\(=2^{99}.3+2^{97}.3+...+3=3\left(2^{99}+2^{97}+...+1\right)\)nên chia hết cho 3
Bài 1:
a) A = 210+211+212
=210*(1+21+22)
=210*(1+2+4)
=7*210 chia hết 7
Đpcm
b)7*32=244
=32+64+128
=25+26+27
a) \(A=2+2^2+...+2^{120}\)
\(\Rightarrow A=\left(2+2^2\right)+...+\left(2^{119}+2^{120}\right)\)
\(\Rightarrow A=\left(2+2^2\right)+...+2^{118}.\left(2+2^2\right)\)
\(\Rightarrow A=6+...+2^{118}.6\)
\(\Rightarrow A=6.\left(1+...+2^{118}\right)⋮3\Rightarrow A⋮3\left(đpcm\right)\)
b) \(A=2+2^2+...+2^{120}\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)
\(\Rightarrow A=\left(2+2^2+2^3\right)+...+2^{117}.\left(2+2^2+2^3\right)\)
\(\Rightarrow A=14+...+2^{117}.14\)
\(\Rightarrow A=14.\left(1+...+2^{117}\right)⋮7\Rightarrow A⋮7\left(đpcm\right)\)
A = (2 + 2^2) + (2^3+ 2^4) +...... + (2^119 + 2^120)
A= (2.1+2.2) + (2^3.1 + 2^3.2) + ...... + (2^119.1 + 2^119.2)
A = 2.3 + 2^3.3 + ...... + 2^119.3
A = 3.(2+2^3+......+2^119)
Chia hết cho 3
A = (2 + 2^2 + 2^3) +...... + (2^118 + 2^119 + 2^120)
A = (2.1 + 2.2 + 2.4) + ....... + (2^118.1 + 2^118.2 + 2^118.4)
A = 2.(1+2+4) + ...... + 2^118.(1 + 2 + 4)
A= 7.(2 + 2^4 + ...... + 2^118)
Chia hết cho 7