Cac ban oi giai dum minh voi
Cho a,b,c > 0 thoa man abc=1. Chung minh rang 1/(a+1)(b+1) +b/(b+1)(c+1) + c/(c+1)(a+1) >= 3/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sai đề rồi nha bạn!
Đề: Cho \(a,b,c>0\) thỏa mãn \(a^2+b^2+c^2=\frac{5}{3}.\) Chứng minh rằng: \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{abc}\)
Lời giải:
Với mọi \(a,b,c\in R\) thì ta luôn có:
\(a^2+b^2+c^2\ge2bc+2ca-2ab\) \(\left(\text{*}\right)\)
Ta cần chứng minh \(\left(\text{*}\right)\) là bất đẳng thức đúng!
Thật vậy, từ \(\left(\text{*}\right)\) \(\Leftrightarrow\) \(a^2+b^2+c^2+2ab-2bc-2ca\ge0\)
\(\Leftrightarrow\) \(\left(a+b-c\right)^2\ge0\) \(\left(\text{**}\right)\)
Bất đẳng thức \(\left(\text{**}\right)\) hiển nhiên đúng với mọi \(a,b,c\) , mà các phép biến đổi trên tương đương
Do đó, bất đẳng thức \(\left(\text{*}\right)\) được chứng minh.
Xảy ra đẳng thức trên khi và chỉ khi \(a+b=c\)
Mặt khác, \(a^2+b^2+c^2=\frac{5}{3}\) (theo giả thiết)
Mà \(\frac{5}{3}=1\frac{2}{3}<2\)
\(\Rightarrow\) \(a^2+b^2+c^2<2\) \(\left(\text{***}\right)\)
Từ \(\left(\text{*}\right)\) kết hợp với \(\left(\text{***}\right)\), ta có thể viết 'kép' lại: \(2bc+2ca-2ab\le a^2+b^2+c^2<2\)
Suy ra \(2bc+2ca-2ab<2\)
Khi đó, vì \(abc>0\) (do \(a,b,c\) không âm) nên chia cả hai vế của bất đẳng trên cho \(2abc\), ta được:
\(\frac{2bc+2ca-2ab}{2abc}<\frac{2}{2abc}\)
\(\Leftrightarrow\) \(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{abc}\)
Vậy, với \(a,b,c\) là các số thực dương thỏa mãn điều kiện \(a^2+b^2+c^2=\frac{5}{3}\) thì ta luôn chứng minh được:
\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}<\frac{1}{abc}\)
\(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)
\(VT=\frac{x^2yz}{1+yz}+\frac{xy^2z}{1+zx}+\frac{xyz^2}{1+xy}=\frac{x^2yz}{xy+yz+yz+zx}+\frac{xy^2z}{xy+zx+yz+zx}+\frac{xyz^2}{xy+yz+xy+zx}\)
\(VT\le\frac{1}{4}\left(\frac{x^2yz}{xy+yz}+\frac{x^2yz}{yz+zx}+\frac{xy^2z}{xy+zx}+\frac{xy^2z}{yz+zx}+\frac{xyz^2}{xy+yz}+\frac{xyz^2}{xy+zx}\right)\)
\(VT\le\frac{1}{4}\left(\frac{x^2y}{x+y}+\frac{xy^2}{x+y}+\frac{y^2z}{y+z}+\frac{yz^2}{y+z}+\frac{x^2z}{x+z}+\frac{xz^2}{x+z}\right)\)
\(VT\le\frac{1}{4}\left(xy+yz+zx\right)=\frac{1}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)
Ta có:10^28+8=100...008 (27 chữ số 0)
Xét 008 chia hết cho 8 =>10^28+8 chia hết cho 8 (1)
Xét 1+27.0+8=9 chia hết cho 9=>10^28+8 chia hết cho 9 (2)
Mà (8,9)=1 (3).Từ (1),(2),(3) =>10^28+8 chia hết cho (8.9=)72
Nếu chưa học thì giải zầy:
10^28+8=2^28.5^28+8
=2^3.2^25.5^28+8
=8.2^25.5^28+8 chia hết cho 8
Mặt khác:10^28+8 chia hết cho 9(chứng minh như cách 1) và(8,9)=1
=>10^28+8 chia hết cho 8.9=72
abcdeg = ab . 10000 + cd .100 + eg
= (ab . 9999 + cd . 99) +( ab + cd + eg)
= 11. (ab . 909 + cd . 9) +( ab + cd + eg)
Ta thấy 11. (ab . 909 + cd . 9) chia hết cho 11
mà theo bài ra ab + cd + eg
Chia hết cho 11
Vậy nên: 11. (ab . 909 + cd . 9) +( ab + cd + eg) hay abcdeg
Vì 11\(⋮\)11
Vậy...
Vậy