Đặt ĐKXĐ và giải phương trình sau: \(\sqrt{25-x}=x-5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`sqrt{x^2-25}-6=3sqrt{x+5}-2sqrt{x-5}(x>=5)`
`<=>sqrt{(x-5)(x+5)}+2sqrt{x-5}=3sqrt{x+5}+6`
`<=>sqrt{x-5}(sqrt{x+5}+2)=3(sqrt{x+5}+2)`
`<=>(sqrt{x+5}+2)(sqrt{x-5}-3)=0`
Vì `sqrt{x+5}+2>0`
`<=>sqrt{x-5}-3=0`
`<=>sqrt{x-5}=3`
`<=>x-5=9<=>x=14(tm)`
Vậy `x=14`
\(\sqrt{x^2-25}-6=3\sqrt{x+5}-2\sqrt{x-5}\\ \Leftrightarrow\sqrt{\left(x-5\right)\left(x+5\right)}-6-3\sqrt{x+5}+2\sqrt{x-5}=0\\ \Leftrightarrow\left(2\sqrt{x-5}+\sqrt{\left(x-5\right)\left(x+5\right)}\right)-\left(3\sqrt{x+5}+6\right)=0\Leftrightarrow\sqrt{x-5}\left(2+\sqrt{x+5}\right)-3\left(2+\sqrt{x+5}\right)=0\\ \Leftrightarrow\left(\sqrt{x-5}-3\right)\left(2+\sqrt{x-5}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{x-5}=3\\\sqrt{x-5}=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-5=9\\x\in\varnothing\end{matrix}\right.\Leftrightarrow x=14\)
=>\(x^2+9-12\sqrt{x^2-25}=13x+5-12\sqrt{x^2-25}\)
<=> \(x^2-13x+4=0\)
........
\(=>x^2+11-12\sqrt{x^2-25}=13x+25-12\sqrt{x^2-25}\)
\(< =>x^2-13x-14=0\)
\(< =>\left(x+1\right)\left(x-14\right)=0\)
..............
\(\left|x-5\right|=2x+3\) `(1)`
Nếu `x-5>=0<=>x>=5` thì phương trình `(1)` trở thành :
`x-5=2x+3`
`<=>x-2x=3+5`
`<=> -x=8`
`<=>x=-8` ( không thỏa mãn )
Nếu `x-5<0<=>x<5` thì phương trình `(1)` trở thành :
`-(x-5)=2x+3`
`<=> -x+5=2x+3`
`<=>-x-2x=3-5`
`<=> -3x=-2`
`<=>x=2/3` ( thỏa mãn )
Vậy pt đã cho có nghiệm `x=2/3`
__
\(\left|x+3\right|=3x-1\) `(1)`
Nếu `x+3>=0<=>x>=-3` vậy phương trình `(1)` trở thành :
`x+3=3x-1`
`<=> x-3x=-1-3`
`<=> -2x=-4`
`<=>x=2` ( thỏa mãn )
Nếu `x+3<0<=>x<-3` thì phương trình `(1)` trở thành :
`-(x+3)=3x-1`
`<=>-x-3=3x-1`
`<=>-x-3x=-1+3`
`<=>-4x=2`
`<=>x=-1/2` ( không thỏa mãn )
Vậy pt đã cho có nghiệm `x=2`
__
`3-2x=4`
`<=> -2x=4-3`
`<=>-2x=1`
`<=>x=-1/2`
Vậy pt đã cho có nghiệm `x=-1/2`
Bài 1:
ĐKXĐ: $3-2x\geq 0\Leftrightarrow x\leq \frac{3}{2}$
Bài 2:
a. ĐKXĐ: $x\geq \frac{1}{3}$
PT $\Leftrightarrow 3x-1=2^2=4$
$\Leftrightarrow x=\frac{5}{3}$ (tm)
b. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow \sqrt{x-2}+2\sqrt{x-2}=6$
$\Leftrightarrow 3\sqrt{x-2}=6$
$\Leftrightarrow \sqrt{x-2}=2$
$\Leftrightarrow x-2=4$
$\Leftrightarrow x=6$ (tm)
Bài 2:
Ta có: \(A=\sqrt{3+\sqrt{5}}+\sqrt{7-3\sqrt{5}}-\sqrt{2}\)
\(=\dfrac{\sqrt{6+2\sqrt{5}}+\sqrt{14-6\sqrt{5}}-2}{\sqrt{2}}\)
\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}-2}{\sqrt{2}}=\sqrt{2}\)
a: \(\left\{{}\begin{matrix}\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\\\dfrac{8}{x-3}+\dfrac{15}{y+2}=-13\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{24}{x-3}-\dfrac{10}{y+2}=126\\\dfrac{24}{x-3}+\dfrac{45}{y+2}=-39\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-55}{y+2}=165\\\dfrac{12}{x-3}-\dfrac{5}{y+2}=63\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+2=\dfrac{-1}{3}\\\dfrac{12}{x-3}=48\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{7}{3}\\x=\dfrac{13}{4}\end{matrix}\right.\)
Bài 1:
a. ĐKXĐ: $x\geq \frac{2}{5}$
PT $\Leftrightarrow 5x-2=7^2=49$
$\Leftrightarrow 5x=51$
$\Leftrightarrow x=\frac{51}{5}=10,2$
b. ĐKXĐ: $x\geq 3$
PT $\Leftrightarrow \sqrt{9(x-3)}+\sqrt{25(x-3)}=24$
$\Leftrightarrow 3\sqrt{x-3}+5\sqrt{x-3}=24$
$\Leftrightarrow 8\sqrt{x-3}=24$
$\Leftrightarrow \sqrt{x-3}=3$
$\Leftrightarrow x-3=9$
$\Leftrightarrow x=12$ (tm)
Bài 1:
c. ĐKXĐ: $x\geq 2$
PT $\Leftrightarrow x^2-5x+6-2(\sqrt{x-2}-1)=0$
$\Leftrightarrow (x-2)(x-3)-2.\frac{x-3}{\sqrt{x-2}+1}=0$
$\Leftrightarrow (x-3)[(x-2)-\frac{2}{\sqrt{x-2}+1}]=0$
$x-3=0$ hoặc $x-2=\frac{2}{\sqrt{x-2}+1}$
Nếu $x-3=0$
$\Leftrightarrow x=3$ (tm)
Nếu $x-2=\frac{2}{\sqrt{x-2}+1}$
$\Leftrightarrow a^2=\frac{2}{a+1}$ (đặt $\sqrt{x-2}=a$)
$\Leftrightarrow a^3+a^2-2=0$
$\Leftrightarrow a^2(a-1)+2a(a-1)+2(a-1)=0$
$\Leftrightarrow (a-1)(a^2+2a+2)=0$
Hiển nhiên $a^2+2a+2=(a+1)^2+1>0$ với mọi $a$ nên $a-1=0$
$\Leftrightarrow a=1\Leftrightarrow \sqrt{x-2}=1\Leftrightarrow x=3$ (tm)
Vậy pt có nghiệm duy nhất $x=3$.
Đặt \(\dfrac{x}{\sqrt{4x-1}}=a\)
Theo đề, ta có phương trình:
a+1/a=2
\(\Leftrightarrow a+\dfrac{1}{a}=2\)
\(\Leftrightarrow\dfrac{a^2+1-2a}{a}=0\)
=>a=1
=>\(x=\sqrt{4x-1}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4x-1\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=3\\x>=\dfrac{1}{4}\end{matrix}\right.\Leftrightarrow x\in\left\{2+\sqrt{3};2-\sqrt{3}\right\}\)
TL
tham khảo nha
Đáp án:
Căn thức số 1
Đk 4-x>=0
=> x<=4
Căn số 2
=căn (x^2-4^2)
4^2<=x^2
4<=x
Hoặc (-4)>(x)
= căn(
Giải thích các bước giải:
k cho mình nick naruto 2k11 trên bxh nha