Cho tam giác ABC vuông tại A và điểm H di chuyển trên BC. Gọi E, F lần lượt là điểm đối xứng của H qua AB, AC.
a) Chứng minh A, E, F thẳng hàng.
b) Chứng minh BEFC là hình thang. Có thể tìm được vị trí của H để BEFC là hình bình hành, hình chữ nhật không?
c) Xác định vị trí của H để tam giác EHF có diện tích lớn nhất
a) Chứng minh H A B ^ = E A B ^ ; H A C ^ = F A C ^ ⇒ E A F ^ = 180 0
B) Chứng minh: E B C ^ + F C B ^ = 2 ( A B C ^ + A C B ^ )
= 1800 Þ EB//FC.
Hay EBCF là hình thang. Nếu EBCF là hình thang vuông thì AH vuông BC. Nếu EBCF là hình bình hành thì H là trung điểm BC.