Cho tam giác ABC vuông tại A và điểm H di chuyển trên BC. Gọi E, F lần lượt là điểm đối xứng...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

a) Chứng minh H A B ^ = E A B ^ ; H A C ^ = F A C ^ ⇒ E A F ^ = 180 0  

B) Chứng minh: E B C ^ + F C B ^ = 2 ( A B C ^ + A C B ^ )  

= 1800 Þ  EB//FC.

Hay EBCF là hình thang. Nếu EBCF là hình thang vuông thì AH vuông BC. Nếu EBCF là hình bình hành thì H là trung điểm BC.

a: Ta có: H và E đối xứng nhau qua AB

nên AB là đường trung trực của HE

=>AH=AE

=>AB là tia phân giác của góc HAE(1)

Ta có: H và F đối xứng nhau qua AC

nên AC là đường trung trực của HF

=>AH=AF

=>AC là tia phân giác của góc HAF(2)

Từ (1) và (2) suy ra \(\widehat{FAE}=\widehat{FAH}+\widehat{EAH}=2\cdot\left(\widehat{CAH}+\widehat{BAH}\right)=2\cdot90^0=180^0\)

hay F,A,E thẳng hàng