So sánh x và y nếu:
a) − 13 x + 14 ≤ − 13 y + 14 ;
b) 9 x − 10 ≤ 9 y − 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: -7x+13>-7y+13
\(\Leftrightarrow-7x>-7y\)
hay x<y
b) Ta có: 11x-1>11y+1
mà 11x+1>11x-1
nên 11x+1>11y+1
\(\Leftrightarrow11x>11y\)
hay x>y
a)-17/23=-171717/232323
b)-265/317<-83/111
c)2002/2003<14/13
d)-27/463<1/3
Bài 1:
ta có 1314<1315
1313<1314
=> dấu cân điền là"<"(1314 -1313 <1315-1314)
7) 5x=4y ⇒\(\dfrac{x}{4}=\dfrac{y}{5}\)
Nhân cả hai vế với \(\dfrac{x}{4}\), ta có: \(\left(\dfrac{x}{4}\right)^2=\dfrac{x}{4}.\dfrac{y}{5}=\dfrac{xy}{20}=\dfrac{20}{20}=1\)
\(\left(\dfrac{x}{4}\right)^2=1\Rightarrow\left[{}\begin{matrix}\dfrac{x}{4}=1\\\dfrac{x}{4}=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
⇒ \(\left[{}\begin{matrix}y=5\\y=-5\end{matrix}\right.\)
4) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{0,5}=\dfrac{y}{0,3}=\dfrac{z}{0,2}=\dfrac{z-y+x}{0,2-0,3+0,5}=\dfrac{1}{\dfrac{2}{5}}=\dfrac{5}{2}\)
\(\dfrac{x}{0,5}=\dfrac{5}{2}\Rightarrow x=\dfrac{5}{4}\)
\(\dfrac{y}{0,3}=\dfrac{5}{2}\Rightarrow y=\dfrac{3}{4}\)
\(\dfrac{z}{0,2}=\dfrac{5}{2}\Rightarrow z=\dfrac{1}{2}\)
6) áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x+11}{13}=\dfrac{y+12}{14}=\dfrac{z+13}{15}=\dfrac{x+11+y+12+z+13}{13+14+15}=\dfrac{42}{42}=1\)
\(\dfrac{x+11}{13}=1\Rightarrow x=2\)
\(\dfrac{y+12}{13}=1\Rightarrow y=1\)
\(\dfrac{z+13}{15}=1\Rightarrow z=2\)
7) \(5x=4y\Rightarrow\dfrac{x}{4}=\dfrac{y}{5}=k\)
\(\Rightarrow x=4k,y=5k\)
\(x.y=20\\ \Rightarrow4k.5k=20\\ \Rightarrow20k^2=20\\ \Rightarrow k^2=1\\ \Rightarrow\left[{}\begin{matrix}k=-1\\k=1\end{matrix}\right.\)
\(x=4k\Rightarrow\left[{}\begin{matrix}x=-4\\x=4\end{matrix}\right.\)
\(y=5k\Rightarrow\left[{}\begin{matrix}y=-5\\y=5\end{matrix}\right.\)
Vậy \(\left(x,y\right)=\left\{\left(-4;-5\right);\left(4;5\right)\right\}\)
\(\frac{x+11}{13}=\frac{y+12}{14}=\frac{z+13}{15}.\)
\(\Rightarrow\frac{x+11}{13}=\frac{y+12}{14}=\frac{z+13}{15}=\frac{x+11+y+12+z+13}{13+14+15}=\frac{\left(x+y+z\right)+\left(11+12+13\right)}{42}\)
\(=\frac{6+36}{42}=\frac{42}{42}=1\) ( Áp dụng tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}\frac{x+11}{13}=1\\\frac{y+12}{14}=1\\\frac{z+13}{15}=1\end{cases}}\Rightarrow\hept{\begin{cases}x+11=13\\y+12=14\\z+13=15\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=2\\z=2\end{cases}}\)
Vậy \(x=y=z=2\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+11}{13}=\frac{y+12}{14}=\frac{z+13}{15}=\frac{x+11+y+12+z+13}{13+14+15}\)
\(=\frac{\left(x+y+z\right)+\left(11+12+13\right)}{13+14+15}=\frac{16+36}{42}=\frac{42}{42}=1\)
\(\Rightarrow\frac{x+11}{13}=1\Rightarrow x+11=13\Rightarrow x=13-11=2\)
\(\Rightarrow\frac{y+12}{14}=1\Rightarrow y+12=14\Rightarrow y=14-12=2\)
\(\Rightarrow\frac{z+13}{15}=1\Rightarrow z+13=15\Rightarrow z=15-13=2\)
Vậy \(x=y=z=2\)