K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 1 2018

u 1 = 18 , u 2 = 54 ⇒ q =    u 2 u 1 = 3.  

Lại có  u n = 39366 ⇔ u 1 . q n − 1 = 39366 ⇔ 18.3 n − 1 = 39366 ⇔ 3 n − 1 = 3 7 ⇔ n = 8

Vậy  S 8 = 18. 1 − 3 8 1 − 3 = 59040

Chọn đáp án B.

28 tháng 5 2017

Chọn B.

u1 = 18, u2 = 54 q = 3

un = 39366 u1.qn-1 = 39366 18.3n-1 = 39366 3n-1 = 37 n = 8.

Vậy 

27 tháng 1 2021

Halo lau ko gap :)

\(\left\{{}\begin{matrix}u_1=\sqrt{2}\\u_2=u_1.q=-2\end{matrix}\right.\Rightarrow q=-\dfrac{2}{\sqrt{2}}=-\sqrt{2}\)

\(u_n=64\sqrt{2}=u_1.q^{n-1}\Leftrightarrow\sqrt{2}.\left(-\sqrt{2}\right)^{n-1}=64\sqrt{2}\)

\(\Leftrightarrow\left(-\sqrt{2}\right)^{n-1}=64\Rightarrow n-1=\log_{\sqrt{2}}64=12\Leftrightarrow n=13\)

\(S_{13}=u_1.\dfrac{q^{13}-1}{q-1}=\sqrt{2}.\dfrac{\left(-\sqrt{2}\right)^{13}-1}{-\sqrt{2}-1}=...\)

Check lại số má hộ tui nhó, số ghê quá

27 tháng 1 2021

hélu@@@

bn giải sai hông nhở, tui k tìm thấy đáp án :33

10 tháng 11 2018

Đáp án D

1 tháng 12 2019

Chọn D

- Gọi u 1 ,   u 2 , . . . ,   u 7  là cấp số nhân cần tìm và q là công bội của cấp số nhân đó.

- Giả thiết ta có:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 1)

25 tháng 5 2019

+ Gọi số hạng đầu của cấp số nhân là u1, công bội là x

Theo giả thiết ta có hệ phương trình

Giải bài 9 trang 180 sgk Đại số 11 | Để học tốt Toán 11

+ Tổng của năm số hạng đầu của CSN là:

Giải bài 9 trang 180 sgk Đại số 11 | Để học tốt Toán 11

3 tháng 10 2018

Chọn D 

Gọi 4 số phải tìm là a1, a2, a3, a4. Theo đầu bài Ta có hệ:

Giải các hệ phương trình Ta có kết quả a1=2, a2=4, a3=8 và a4=12

Chọn D

10 tháng 6 2017

Theo giả thuyêt ta có:

Chọn D

26 tháng 11 2017

20 tháng 11 2017

Kí hiệu u1,u2,u3,u4,u5 là các số hạng của cấp số nhân

Ta có :

Đáp án C