K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2018

u 12 = 23 S 12 = 144   ⇒ u 1 + 11 d = 23 12 2 u 1 + u 12 = 144     ⇔ u 1 + 11 d = 23 u 1 + ​ 23 = 24 ⇔ u 1 = 1 d = 23 − u 1 11 = 2

Chọn đáp án A

20 tháng 4 2016

Gọi cấp số nhân tăng nghiêm ngặt là \(a_n\). Theo đầu bài ta có \(a_2,a_4\) là 2 nghiệm của phương trình

\(t^2-30t+144=0\Leftrightarrow\begin{cases}t=6\\t=24\end{cases}\)

\(\Leftrightarrow\begin{cases}a_2=6\\a_4=24\end{cases}\) hoặc \(\begin{cases}a_2=24\\a_4=6\end{cases}\)

\(\Leftrightarrow\begin{cases}a_1q=6\\a_1q^3=24\end{cases}\) hoặc \(\begin{cases}a_1q=24\\a_1q^3=6\end{cases}\)

\(\Leftrightarrow\begin{cases}a_1q=6\\q^2=4\end{cases}\)  hoặc \(\begin{cases}a_1q=24\\q^2=\frac{6}{24}=\frac{1}{4}\end{cases}\)

\(\Leftrightarrow\begin{cases}a_1=\frac{6}{\pm2}\\q=\pm2\end{cases}\) hoặc \(\begin{cases}a_1=24\left(\pm2\right)\\q=\pm\frac{1}{2}\end{cases}\)

Do cấp số nhân tăng nghiêm ngặt, nên q>1, do vậy ta chọn \(a_1=3;q=2\)

Cho nên \(S_{10}=u_1\frac{2^{10}-1}{2-1}=3.\left(1024-1\right)=3069\)

21 tháng 2 2017

Giao lưu:

Gọi dãy số đã co có dạng: \(U_1;U_2;U_3;U_4;U_5...U_{10}...U_n\)

đầu bài ta có hệ phương trình.

\(\left\{\begin{matrix}U_n.q=U_{\left(n+1\right)}\left(1\right)\\q>1\left(2\right)\\U_2+U_4=144\left(3\right)\\U_2.U_4=30\left(4\right)\end{matrix}\right.\)

Thế (3) vào (4) \(\Leftrightarrow U_2\left(144-U_2\right)=30\Leftrightarrow U_2^2-144U_4+30=0\Rightarrow\left[\begin{matrix}U_2=24\\U_2=6\end{matrix}\right.\)

Vì U2 và U4 có vai trò như nhau

do vậy có cắp nghiệm là hoán đổi (U2,U4)=(6,24)(*)

Từ (1) và (2) ta có(*)=> \(\left\{\begin{matrix}U_2=6\\U_4=24\end{matrix}\right.\)(**)

Từ (1) ta có: \(U_4=q.U_3=q.\left(q.U_2\right)=q^2.U_2\)(4)

Từ (**) và (4) ta có \(\frac{U_4}{U_2}=q^2=\frac{24}{6}=4\Rightarrow!q!=2\) (5)

Từ (3) và (5) => q=2

Vậy tổng 10 số hạng đầu tiên của dẫy là :\(S_{10}=2^0.3+2^1.3+3.2^2+...+3.2^8+3.2^9=3.\left(1+2+2^2+..+2^9\right)\)

\(S_{10}=3.\left(2^{10}-1\right)\)

25 tháng 5 2019

+ Gọi số hạng đầu của cấp số nhân là u1, công bội là x

Theo giả thiết ta có hệ phương trình

Giải bài 9 trang 180 sgk Đại số 11 | Để học tốt Toán 11

+ Tổng của năm số hạng đầu của CSN là:

Giải bài 9 trang 180 sgk Đại số 11 | Để học tốt Toán 11

18 tháng 12 2017

Đáp án B

Hướng dẫn giải.

Ta có  u n = u 1 . q n - 1

⇒ u 5 = - 3 . 2 3 4 = - 16 27

10 tháng 6 2017

Theo giả thuyêt ta có:

Chọn D

10 tháng 11 2018

Đáp án D

26 tháng 12 2017

Đáp án C

30 tháng 12 2019

Chọn A

Gọi u1,u2,u3,u4 là 4 số hạng đầu tiên của cấp số nhân, với công bội q. gọi (vn) là cấp số cộng tương ứng với công sai là d. Theo giả thuyết Ta có:

u 1 + u 2 + u 3 = 16 4 9 u 1 = v 1 u 2 = v 4 = v 1 + 3 d u 3 = v 8 = v 1 + 7 d ⇔ u 1 + u 1 q + u 2 q 2 = 16 4 9    1 u 1 q = u 1 + 3 d                        2 u 1 q 2 = u 1 + 7 d                     3

Khử d từ (2) và (3) ta thu được: 

7 u 1 q = 7 u 1 + 21 d 3 u 1 q 2 = 3 u 1 + 21 d

Lấy vế trừ vế ta thu được 

7 u 1 q − 3 u 1 q 2 = 4 u 1 ⇔ u 1 . 3 q 2 − 7 q + 4 = 0 ⇔ u 1 = 0 3 q 2 − 7 q + 4 = 0

Do  u 1 ≠ 0 ⇒ q = 1 q = 4 3

Theo định nghĩa cấp số nhận thì q ≠ 1 . Do đó  q = 4 3

Thay q = 4 3 vào (1) ta được  u 1 = 4

25 tháng 7 2018

Đáp án C

Ta có  u 4 = u 1 . q 3 ⇒ q = 3