OLM ưu đãi đặc biệt gói SVIP 18 THÁNG dành cho nhà trường, đăng kí ngay!
Tham gia chương tình "Học kỳ rực rỡ" cùng OLM cơ hội nhận quà lên tới 2.000.000Đ
Cơ hội nhận 15 ngày VIP dành cho thầy cô nhân dịp đầu năm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho dãy số ( u n ) với u n = 1 + 2 + 3 + 4 + . . . + n ( 1 + 3 + 3 2 + 3 3 + . . . + 3 n ) . n + 1 . Tính l i m u n
A. 0
B. 2
C. 1 3
D. 1
* Xét tử số: Ta thấy 1, 2, 3, 4, ..., n là một dãy số thuộc cấp số cộng có n số hạng với
u 1 = 1 ; d= 1 .
Tổng n số hạng của cấp số cộng: S n = u 1 + u n n 2 = 1 + n n 2 .
* Xét mẫu số: Ta thấy 1 , 3 , 3 2 , 3 3 , ... , 3 n là một dãy số thuộc cấp số nhân có n + 1 số hạng với u 1 = 1 ; q = 3
Tổng (n+ 1) số hạng của cấp số nhân: S n + 1 = u 1 . 1 − q n + 1 1 − q = 1 − 3 n + 1 1 − 3 = 3 n + 1 − 1 2 .
⇒ u n = n 3 n + 1 − 1 = n 3.3 n − 1
Bằng quy nạp ta luôn có n < 2 n , ∀ n ∈ ℕ * và 3 n > 1 , ∀ n ∈ ℕ *
⇒ u n = n 3.3 n − 1 < n 3 n < 2 n 3 n = 2 3 n
Vì lim 2 3 n = 0 nên lim u n = 0.
Chọn đáp án A
1. Tìm 20 số hạng đầu của dãy số (un) cho bởi:
\(\hept{\begin{cases}u_1=1\\u_{n+1}=\frac{u_{n+2}}{u_{n+1}}\end{cases}},n\inℕ^∗\)
2. Cho dãy số: u1=2; u2=3; u3=18; u4= 67; u5=184
Tính u10; u11; u12; u13; u14; u15
Cho dãy số (Un) xác định bởi U1=-3 và U(n+1)=Un+ n^2 -3n +4, mọi n thuộc N*. Số 1391 là số hạng thứ mấy của dãy ?
Cho dãy số \(u_n\)xác định\(\left\{{}\begin{matrix}u_1=4\\u_{n+1}=\dfrac{3nu_n}{n+1}-\dfrac{2n^2+6n+3}{n^2\left(n+1\right)^3}\end{matrix}\right.\) với ∀n\(\ge\)1
Xác định công thức tổng quát của u\(_n\) theo n và tính lim (\(\dfrac{nu_n}{4}\))
GIÚP MÌNH VỚI ,AI LÀM XONG TRƯỚC SẼ ĐƯỢC TICK NHIỀU
cho dãy số un = 1- 1/22 + 2/32 - 3/42 + ... + i*(n-1)/n2 ( nếu n lẻ, i = -1.nếu n chẵn , n là 1 số nghuyên n> hoặc bàng 1). lập 1 quy trình tính un
cho dãy số U(n) với \(\left\{{}\begin{matrix}U_1=3\\U_{n+1}=3U_n-2\left(n\ge1\right)\end{matrix}\right.\).Số hạng tổng quát của dãy làA. Un= 2.3n+1 B. Un=2.3n-1C. Un=2.3n-1-1D. Un=2.3n-1+1
help me :((
Chọn C
Cho dãy xác định \(\left\{{}\begin{matrix}u\left(1\right)=\dfrac{1}{4}\\u\left(n+1\right)=\left(u\left(n\right)\right)^2+\dfrac{u\left(n\right)}{2}\end{matrix}\right.\)
CM với mọi n thì 0<u(n)<\(\dfrac{1}{4}\) và\(\dfrac{u\left(n+1\right)}{u\left(n\right)}\le\dfrac{3}{4}\)
Từ đó suy ra limu(n)=o
Cho dãy số U1=3;U2=5;... và Un+2=3Un+1-2Un-2. Với mọi n>1.gọi Sn và Pn là tổng và tích của n số hạng đầu tiên, tính S2008 và P10
cho dãy số Un được xác định bởi: U1 = 1 ; U2 = 2 ; U3 = 3 ; Un+3 = 2Un+2 + Un+1 - Un ( n thuộc N*) . Tìm U25 ? ( giải theo công thức trên máy tính casio dùm mình nhé)
* Xét tử số: Ta thấy 1, 2, 3, 4, ..., n là một dãy số thuộc cấp số cộng có n số hạng với
u 1 = 1 ; d= 1 .
Tổng n số hạng của cấp số cộng: S n = u 1 + u n n 2 = 1 + n n 2 .
* Xét mẫu số: Ta thấy 1 , 3 , 3 2 , 3 3 , ... , 3 n là một dãy số thuộc cấp số nhân có n + 1 số hạng với u 1 = 1 ; q = 3
Tổng (n+ 1) số hạng của cấp số nhân: S n + 1 = u 1 . 1 − q n + 1 1 − q = 1 − 3 n + 1 1 − 3 = 3 n + 1 − 1 2 .
⇒ u n = n 3 n + 1 − 1 = n 3.3 n − 1
Bằng quy nạp ta luôn có n < 2 n , ∀ n ∈ ℕ * và 3 n > 1 , ∀ n ∈ ℕ *
⇒ u n = n 3.3 n − 1 < n 3 n < 2 n 3 n = 2 3 n
Vì lim 2 3 n = 0 nên lim u n = 0.
Chọn đáp án A