cho tam giác vuông ABC vuông tại B .D thuộc BC biết BD =3cm .diện tích ABC=76 cm2 ,diện tích tam giác ABD =19cm2.tính chiều dài CD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=9^2+12^2=225\)
hay BC=15(cm)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{BD}{9}=\dfrac{CD}{12}\)
mà BD+CD=BC(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{9}=\dfrac{CD}{12}=\dfrac{BD+CD}{9+12}=\dfrac{BC}{21}=\dfrac{15}{21}=\dfrac{5}{7}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BD}{9}=\dfrac{5}{7}\\\dfrac{CD}{12}=\dfrac{5}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{45}{7}cm\\CD=\dfrac{60}{7}cm\end{matrix}\right.\)
Vậy: \(BD=\dfrac{45}{7}cm;CD=\dfrac{60}{7}cm\)
Chiều cao của hình tam giác ABC là :
18x2:6=6 (cm)
Diện tích hình tam giác ABC là :
9x6:2=27 (cm2)
Đáp số: 27 cm2
a. Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{9^2+12^2}=\sqrt{225}=15cm\)
Áp dụng t/c tia phân giác góc A, ta có:
\(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{9}{12}=\dfrac{BD}{CD}\) \(\Leftrightarrow\dfrac{3}{4}=\dfrac{BD}{CD}\) \(\Leftrightarrow\dfrac{CD}{4}=\dfrac{BD}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\dfrac{CD}{4}=\dfrac{BD}{3}=\dfrac{CD+BD}{4+3}=\dfrac{15}{7}\)
\(\Rightarrow CD=\dfrac{15}{7}.4=\dfrac{60}{7}cm\)
\(\Rightarrow BD=\dfrac{15}{7}.3=\dfrac{45}{7}cm\)
Xét tam giác ABD và tam giác ADE có:
\(\widehat{E}=\widehat{D}=90^0\)
AD: cạnh chung
\(\widehat{BAD}=\widehat{DAE}\) ( gt )
=> tam giác ABD = tam giác ADE ( c.g.c )
=> BD = ED = \(\dfrac{45}{7}cm\)
b. Xét tam giác ABD và tam giác ABC, có:
\(\widehat{BAC}=\widehat{BDA}=90^0\)
\(\widehat{B}:chung\)
Vậy tam giác ABD đồng dạng tam giác ABC ( g.g )
\(\Rightarrow\dfrac{BD}{AB}=\dfrac{AD}{AC}\)
\(\Leftrightarrow\dfrac{45}{\dfrac{7}{9}}=\dfrac{AD}{12}\)
\(\Leftrightarrow\dfrac{5}{7}=\dfrac{AD}{12}\)
\(\Leftrightarrow7AD=60\Leftrightarrow AD=\dfrac{60}{7}cm\)
\(S_{ABD}=\dfrac{1}{2}.BD.AD=\dfrac{1}{2}.\dfrac{45}{7}.\dfrac{60}{7}\simeq27,55cm^2\)
\(S_{ACD}=\dfrac{1}{2}.CD.AD=\dfrac{1}{2}.\dfrac{60}{7}.\dfrac{60}{7}\simeq36,73cm^2\)