Cho A, B là hai tập hợp và mệnh đề P: “A là một tập hợp con của B”.
Lập mệnh đề đảo của P.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P:\forall x\left(x\in A\Rightarrow x\in B\right)\)
b) Mệnh đề đảo của P là \(\forall x\left(x\in B\Rightarrow x\in A\right)\) hay "B là một tập hợp con của A"
c) Phủ định của P là ; "A không phải là một tập con của B", hay "\(\exists x:\left(x\in A\Rightarrow x\notin B\right)\)"
Phủ định của P là: “A không phải là một tập con của B”, hay "∃x(x ∈ A ⇒ x ∉ B)"
a) Dễ thấy: \( - 4;{\rm{ }}0;{\rm{ }}1;{\rm{ }}2 \in \mathbb{Z}\)
Vậy C là tập con của \(\mathbb{Z}\), mệnh đề đúng.
b) Vì \( - 4 \notin \mathbb{N}\) nên C không là tập con của \(\mathbb{N}\)
Vậy mệnh đề sai.
c) Dễ thấy: \( - 4;{\rm{ }}0;{\rm{ }}1;{\rm{ }}2 \in \mathbb{R}\)
Vậy C là tập con của \(\mathbb{R}\), mệnh đề đúng.
Đáp án C
Nếu x là một phần tử thuộc tập hợp A thì x ∈ A ; x ⊂ A nên các mệnh đề (I) và (IV) đúng.
Mệnh đề đảo là ∀x (x ∈ B ⇒ x ∈ A) hay "B là một tập con của A"