Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P:\forall x\left(x\in A\Rightarrow x\in B\right)\)
b) Mệnh đề đảo của P là \(\forall x\left(x\in B\Rightarrow x\in A\right)\) hay "B là một tập hợp con của A"
c) Phủ định của P là ; "A không phải là một tập con của B", hay "\(\exists x:\left(x\in A\Rightarrow x\notin B\right)\)"
Mệnh đề đảo là ∀x (x ∈ B ⇒ x ∈ A) hay "B là một tập con của A"
1/ Mệnh đề phủ định:
\(\overline{A}=\) "\(\forall n\in N:\) 3n+1 là số chẵn"
Mệnh đề phủ định là mệnh đề sai, ví dụ với \(n=2\) thì \(3n+1=7\) là số lẻ
2/ Mệnh đề đúng là mệnh đề (I)
Các mệnh đề (II), (III) sai do các kí hiệu {3;4}; {a,3,b} là các kí hiệu tập hợp, ko có quan hệ tập này "thuộc" tập kia
3/ Các tập X thỏa mãn:
\(\left\{1;3;4\right\};\left\{0;1;3;4\right\};\left\{1;2;3;4\right\};\left\{0;1;2;3;4\right\}\)
a) Có một hình vuông không phải là hình thoi.
Mệnh đề phủ định sai.
b) Mọi tam giác cân đều đều là tam giác đều.
Mệnh đề phủ định sai.
+) Mệnh đề phủ định của mệnh đề A là \(\overline A \): “Đồ thị hàm số y = x không là một đường thẳng”
Mệnh đề \(\overline A \) sai vì đồ thị hàm số y = x là một đường thẳng.
+) Mệnh đề phủ định của mệnh đề B là \(\overline B \): “Đồ thị hàm số \(y = {x^2}\) đi qua điểm A (3; 9)”
Mệnh đề \(\overline B \) đúng vì \(9 = {3^2}\) nên A (3;9) thuộc đồ thị hàm số \(y = {x^2}\).
Phủ định của P là: “A không phải là một tập con của B”, hay "∃x(x ∈ A ⇒ x ∉ B)"