Tìm vi phân của hàm số y = xsinx+cosx
A. dy= xcosxdx
B. dy= xcosx
C. dy= (2sinx + xcosx)dx
D. dy= (sinx+cosx)dx
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có ∫ (xcosx)’dx = (xcosx) và ∫ cosxdx = sinx. Từ đó
∫ xsinxdx = - ∫ [(xcosx)’ – cosx]dx = -∫ (xcosx)’dx + ∫ cosxdx = - xcosx + sinx + C.
y = ax + b ⇒ y′ = a và dy = adx = aΔx;
Δy = a(x + Δx) + b − [ax + b] = aΔx..
Vậy dy = Δy.
Lời giải:
\(d(\arctan(3x-1))_{x=\frac{1}{3}}=\arctan (3x-1)'_{x=\frac{1}{3}}dx\)
Vậy \(A=\arctan (3x-1)'_{x=\frac{1}{3}}=\frac{3}{(1-3x)^2+1}_{(x=\frac{1}{3})}=3\)
y’= sinx + xcosx – sinx = xcosx
do đó dy= xcosxdx
Đáp án là A