Phần 1: Trắc nghiệm
Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng?
A. lim n → + ∞ 1 n = 1
B. lim n → + ∞ q n = 0 , q > 1
C. lim n → + ∞ 1 n = 0
D. lim n → + ∞ q n = 0 , q < 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dựa vào một số giới hạn đặc biệt ta có:
⇒ Mệnh đề C là đúng.
Chọn C.
ta thấy 1 số chính phương không bao giờ có đuôi là 2;3;7;8
Mà nếu mệnh đề (2) đúng thì n+8=...2 => mệnh đề (1) sai và n-1=...3 => mệnh đề (3) sai
Nhưng chỉ có 1 mệnh đề sai nên chỉ có mệnh đề (2) là thỏa mãn
Vậy n+8 và n+1 là số chính phương
\(\Rightarrow\left(n+8\right)-\left(n-1\right)=9\)
\(\Leftrightarrow\left(n+8\right)^2-\left(n-1\right)^2=9^2\)
\(\Leftrightarrow\left[\left(n+8\right)-\left(n-1\right)\right]\left[\left(n+8\right)+\left(n-1\right)\right]=9^2\)
\(\Leftrightarrow9\left(2n+7\right)=9^2\)
\(\Leftrightarrow2n-7=9\)
\(\Leftrightarrow n=8\)
Vậy n=8 thì mới thỏa mãn mệnh đề (1) và (3)
Chọn C.
- Câu A sai vì hai đường thẳng không có điểm chung thì chéo nhau hoặc song song với nhau.
- Câu B sai vì hai đường thẳng phân biệt không có điểm chung thì chéo nhau hoặc song song với nhau.
- Câu D sai vì hai đường thẳng phân biệt nằm trên hai mặt phẳng phân biệt thì có thể chéo nhau hoặc song song với nhau.
Đáp án là C. Ta có a,b∈N* không suy ra a -1, b -1∈N* . Do vậy không áp dụng được giả thiết quy nạp cho cặp {a -1, b -1}.
Chú ý: nêu bài toán trên đúng thì ta suy ra mọi số tự nhiên đều bằng nhau. Điều này là vô lí.
- Dựa vào một số giới hạn đặc biệt ta có:
→ ta có khẳng định D là đúng.
Chọn D.