K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 12 2018

Vì hai đường cao AM và BN cắt nhau tại H nên CH là đường cao của  Δ A B C và H là trực tâm tam giác ABC nên A, B, D sai, C đúng.

Chọn đáp án C

a: góc AEH+góc ADH=180 độ

=>AEHD nội tiêp

góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

b: góc ABI=góc ACK(=90 độ-góc BAC)

góc ABI=1/2*sđ cung AI

góc ACK=1/2*sđ cung AK

=>sđ cung AI=sđ cung AK

=>AI=AK

a: góc AEH+góc AFH=180 độ

=>AEHF nội tiếp

Xét tứ giác BFEC có

góc BFC=góc BEC=90 độ

=>BFEC nội tiếp

=>góc AFE=góc ACB

=>ΔAFE đồng dạng với ΔACB

b: MF/MB=HF/HB

NE/NC=HE/HC

Xét ΔHFE và ΔHBC có

góc HFE=góc HBC

góc FHE=góc BHC

=>ΔHFE đồng dạng với ΔHBC

=>HF/HB=HE/HC

=>MF/MB=NE/NC

a) Xét tứ giác BCB'C' có 

\(\widehat{BC'C}=\widehat{BB'C}\left(=90^0\right)\)

\(\widehat{BC'C}\) và \(\widehat{BB'C}\) là hai góc cùng nhìn cạnh BC

Do đó: BCB'C' là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)