Cho Δ A B C , hai đường cao AM và BN cắt nhau tại H. Em hãy chọn phát biểu đúng:
A. H là trọng tâm của Δ A B C
B. H là tâm đường tròn nội tiếp Δ A B C
C. CH là đường cao của Δ A B C
D. CH là đường trung trực của Δ A B C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc AEH+góc ADH=180 độ
=>AEHD nội tiêp
góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
b: góc ABI=góc ACK(=90 độ-góc BAC)
góc ABI=1/2*sđ cung AI
góc ACK=1/2*sđ cung AK
=>sđ cung AI=sđ cung AK
=>AI=AK
a: góc AEH+góc AFH=180 độ
=>AEHF nội tiếp
Xét tứ giác BFEC có
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
=>góc AFE=góc ACB
=>ΔAFE đồng dạng với ΔACB
b: MF/MB=HF/HB
NE/NC=HE/HC
Xét ΔHFE và ΔHBC có
góc HFE=góc HBC
góc FHE=góc BHC
=>ΔHFE đồng dạng với ΔHBC
=>HF/HB=HE/HC
=>MF/MB=NE/NC
a) Xét tứ giác BCB'C' có
\(\widehat{BC'C}=\widehat{BB'C}\left(=90^0\right)\)
\(\widehat{BC'C}\) và \(\widehat{BB'C}\) là hai góc cùng nhìn cạnh BC
Do đó: BCB'C' là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Vì hai đường cao AM và BN cắt nhau tại H nên CH là đường cao của Δ A B C và H là trực tâm tam giác ABC nên A, B, D sai, C đúng.
Chọn đáp án C