K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2019

Đường thẳng d có phương trình y   =   − k x   +   b   ( k ≠     0 )  có –k là hệ số góc

Đáp án cần chọn là: A

a: Để (d)//(d') thì \(\left\{{}\begin{matrix}k-2=2\\-k\ne4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}k=4\\k\ne-4\end{matrix}\right.\)

=>k=4

b: Để (d) vuông góc (d') thì \(2\left(k-2\right)=-1\)

=>2k-4=-1

=>2k=3

=>\(k=\dfrac{3}{2}\)

c: Để (d) cắt (d') thì \(k-2\ne2\)

=>\(k\ne4\)

17 tháng 12 2020

Đường thẳng (d) có dạng \(y=kx+m\)

\(A\left(0;2\right)\in\left(d\right)\Rightarrow m=2\)

\(\Rightarrow y=kx+2\left(d\right)\)

\(\left(d\right)\) cắt \(\left(P\right)\) tại hai điểm phân biệt khi phương trình \(x^2+\left(4-k\right)x+1=0\) có hai nghiệm phân biệt

\(\Leftrightarrow\Delta=\left(k-2\right)\left(k-6\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}k>6\\k< 2\end{matrix}\right.\)

Ta có \(x_1=\dfrac{k-4+\sqrt{k^2-8k+12}}{2}\Rightarrow y_1=\dfrac{k^2-4k+4+k\sqrt{k^2-8k+12}}{2}\)

\(\Rightarrow E\left(\dfrac{k-4+\sqrt{k^2-8k+12}}{2};\dfrac{k^2-4k+4+k\sqrt{k^2-8k+12}}{2}\right)\)

\(x_1=\dfrac{k-4-\sqrt{k^2-8k+12}}{2}\Rightarrow y_1=\dfrac{k^2-4k+4-k\sqrt{k^2-8k+12}}{2}\)

\(\Rightarrow F\left(\dfrac{k-4-\sqrt{k^2-8k+12}}{2};\dfrac{k^2-4k+4-k\sqrt{k^2-8k+12}}{2}\right)\)

Tọa độ trung điểm \(I\left(\dfrac{k-4}{2};\dfrac{k^2-4k+4}{2}\right)\)

\(x-2y+3=0\left(d'\right)\)

\(I\left(\dfrac{k-4}{2};\dfrac{k^2-4k+4}{2}\right)\in\left(d'\right)\Rightarrow\dfrac{k-4}{2}-\left(k^2-4k+4\right)+3=0\)

\(\Leftrightarrow2k^2-9k+6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}k=\dfrac{9+\sqrt{33}}{2}\left(l\right)\\k=\dfrac{9-\sqrt{33}}{2}\left(tm\right)\end{matrix}\right.\)

\(\Leftrightarrow k=\dfrac{9-\sqrt{33}}{2}\)

P/s: Không biết đúng kh.

22 tháng 6 2017

Đường thẳng d đi qua A và có hệ số góc k nên có dạng y= k( x+ 1)   hay

Kx- y+k=0 .

Phương trình hoành độ giao điểm của C  và  d là:

x 3 - 3 x 2 + 4 = k x + k ⇔ ( x + 1 ) ( x 2 - 4 x + 4 - k ) = 0

D cắt tại ba điểm phân biệt khi phương trình (*) có hai nghiệm phân biệt khác -1

⇔ ∆ ' > 0 g ( - 1 ) ≠ 0 ⇔ k > 0 k ≠   9

Khi đó g( x) =0 khi x=2- k ;   x = 2 + k    Vậy các giao điểm của hai đồ thị lần lượt là

A ( - 1 ;   0 ) ; B ( 2 - k ;   3 k - k k ) ; C ( 2 + k ;   3 k + k k ) .

Tính được

B C = 2 k 1 + k 2 , d ( O , B C ) = d ( O , d ) = k 1 + k 2 .

Khi đó 

S ∆ O B C = 1 2 . k k 2 + 1 . 2 k . k 2 + 1 = 1 ⇔ k k = 1 ⇔ k 3 = 1 ⇔ k = 1 .

 

Vậy k= 1 thỏa yêu cầu bài toán.

Chọn C.

17 tháng 11 2017

Đáp án C

18 tháng 10 2018

Đáp án A

Phương trình hoành độ giao điểm của đồ thị hàm số  y = x 2 − 6 x + 9  và trục hoành là:

x 2 − 6 x + 9 = 0 ⇔ x = 0 .  

Diện tích hình phẳng (H) giới hạn bởi đồ thị hàm số  y = x 2 − 6 x + 9  và 2 đường thẳng x= 0; y = 0 là:

Phương trình đường thẳng (d) có hệ số góc k và cắt trục tung tại điểm A(0;4) là: y = kx +4

Gọi B là giao điểm của (d) và trục hoành  ⇒ B − 4 k ; 0 .  

Để (d) chia (H) thành 2 phần có diện tích bằng nhau thì:

.