Từ một cỗ bài tú lơ khơ gồm 52 con, lấy ngẫu nhiên lần lượt có hoàn lại từng con cho đến khi lần đầu tiên lấy được con át thì dừng. Tính xác suất sao cho
a) Quá trình lấy dừng lại ở lần thứ hai;
b) Quá trình lấy dừng lại sau không quá hai lần.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kí hiệu \(A_k:\)" Lần thứ k lấy được con át", \(k\ge1\). Rõ ràng \(A_1,A_2\) độc lập
a) Ta cần tính \(P\left(\overline{A_1}\cap A_2\right)\). Ta có \(P\left(\overline{A_1}\cap A_2\right)=P\left(\overline{A_1}\right)P\left(A_2\right)=\dfrac{48}{52}.\dfrac{4}{52}\)
b) Theo bài ra ta cần tính :
\(P\left(A_1\right)+P\left(\overline{A_1}\cap A_2\right)=\dfrac{4}{52}+\dfrac{48}{52}.\dfrac{4}{52}\approx0,15\)
Kí hiệu Ak: “ lần thứ k lấy được con át” k≥1 thì P(A1)=4/52=1/13
b. ta cần tính :
Chọn C
Đáp án B
Gọi A k : “Lần thứ k lấy được con Át” thì k ≥ 1 thì
Ta cần tính
Kí hiệu Ak: “ lần thứ k lấy được con át” k≥1 thì P(A1)=4/52=1/13
a. Ta tính P(A1)= 1/13
Chọn B
Không gian mẫu là kết quả của việc chọn ngẫu nhiên 4 con trong số 52 con
a. Đặt A : « Cả 4 con lấy ra đều là át »
⇒ n(A) = 1
b. + B : « Không có con át nào trong 4 con khi lấy ra »
⇒ B là kết quả của việc chọn ngẫu nhiên 4 con trong số 48 con còn lại
c. C: “Rút được 2 con át và 2 con K”.
Phép thử T được xét là: "Từ cỗ bài tú lơ khơ 52 con bài, rút ngẫu nhiên 4 con bài".
Mỗi kết quả có thể có là một tổ hợp chập 4 của 52 con bài. Do đó số các kết quả có thể có của phép thử T là n(Ω) = C452 = = 270725.
Vì rút ngẫu nhiên nên các kết quả có thể có là đồng khả năng.
a) Gọi biến cố A: "Rút được bốn con át". Ta có, số kết quả có thể có thuận lợi cho A là n(A) = 1. Suy ra P(A) = ≈ 0,0000037.
b) Gọi biến cố B: "Rút được ít nhất một con át". Ta có
= "Rút được 4 con bài đều không là át". Mỗi kết quả có thể thuận lợi cho là một tổ hợp chập 4 của 48 con bài không phải là át. Suy ra số các kết quả có thể có thuận lợi cho là C448 = = 194580. Suy ra P() = ≈ 0,7187.
Qua trên ta có P(B) = 1 - P() ≈ 0,2813.
c) Gọi C là biến cố: "Rút được hai con át và hai con K".
Mỗi kết quả có thể có thuận lợi cho C là một tổ hợp gồm 2 con át và 2 con K. Vận dụng quy tắc nhân tính được số các kết quả có thể có thuận lợi cho C là
n(C) = C24 C24 = 6 . 6 = 36.
Suy ra P(C) = ≈ 0,000133.
Lời giải:
Lấy 3 quân ngẫu nhiên từ 52 quân có $C^3_{52}$ cách
a. Lấy được 3 quân át, có $C^3_4=4$ cách
Xác suất: $\frac{4}{C^3_{52}}=\frac{1}{5525}$
b. Lấy được 1 quân át, 2 quân còn lại khác, có $C^1_4.C^2_{48}$ cách
Xác suất: $\frac{C^1_4.C^2_{48}}{C^3_{52}}=\frac{1128}{5525}$
c.Lấy được 2 quân cơ, 1 quân bất kỳ, có:
$C^2_4.C^1_{48}$
Xác suất: $\frac{C^2_4.C^1_{48}}{C^3_{52}}=\frac{72}{5525}$
Kí hiệu A k : Lần thứ k lấy được con át , k ≥ 1 . Rõ ràng A 1 , A 2 độc lập.
a) Ta cần tính P ( A 1 ∩ A 2 ) .
Ta có:
b) Theo bài ra ta cần tính: