Chứng minh với n thuộc N
n\(\ge\)2 có \(\frac{1}{2^3}+\frac{1}{3^3}+...+\frac{1}{n^3}<\frac{1}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo theo link này nhé!
Chứng minh: 1/2^3 + 1/3^3 + 1/4^3 + ... + 1/n^3 < 1/4 với n thuộc N, n ≥ 2 - Toán học Lớp 8 - Bài tập Toán học Lớp 8 - Giải bài tập Toán học Lớp 8 | Lazi.vn - Cộng đồng Tri thức & Giáo dục
\(A< \frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{\left(n-1\right)\cdot n\cdot\left(n+1\right)}\)
Nhận xét: mỗi số hạng tổng có dạng
\(\frac{1}{\left(n-1\right)\cdot n\cdot\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n\left(n-1\right)}-\frac{1}{n\left(n+1\right)}\right)\)
Từ đó suy ra: \(A< \frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+....+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{n\left(n+1\right)}\right)< \frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}\left(đpcm\right)\)
Ta có :
\(A=\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+...+\frac{\left(n-1\right)n-1}{n!}\)
\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{\left(n-1\right)n}{n!}-\frac{1}{n!}\)
\(=1-\frac{1}{2!}+1-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4}!+\frac{1}{3!}-\frac{1}{5!}+\frac{1}{4!}-...+\frac{1}{\left(n-2\right)!}-\frac{1}{n!}\)
\(=2-\frac{1}{n!}< 2\)
Vậy ...
\(\frac{1}{3^3}< \frac{1}{2.3.4}\) \(\frac{1}{4^3}< \frac{1}{3.4.5}\) \(\frac{1}{5^3}< \frac{1}{4.5.6}\) ..... \(\frac{1}{n^3}< \frac{1}{\left(n-1\right)n\left(n+1\right)}\)
\(\Rightarrow B< \frac{1}{2.3.4}+\frac{1}{3.4.5}+\frac{1}{4.5.6}+...+\frac{1}{\left(n-1\right)n\left(n+1\right)}\)
\(\Rightarrow B< \frac{1}{2}\left(\frac{2}{2.3.4}+\frac{2}{3.4.5}+\frac{2}{4.5.6}+...+\frac{2}{\left(n-1\right)n\left(n+1\right)}\right)\)
\(\Rightarrow B< \frac{1}{2}\left(\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+\frac{6-4}{4.5.6}+...+\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}\right)\)
\(\Rightarrow B< \frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{4.5}-\frac{1}{5.6}+...+\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right)\)
\(\Rightarrow B< \frac{1}{2}\left(\frac{1}{6}-\frac{1}{n\left(n+1\right)}\right)=\frac{1}{12}-\frac{1}{2n\left(n+1\right)}< \frac{1}{12}\)
đpcm<=> 5/9.14+5/14.19+...+5/(5n-1)(5n+4)<1/9
<=>1/9-1/5n+4<1/9
<=>5n-5/45n+36<1/9(đúng với mọi n>=2)
Vậy ddpcm là đúng
Đặt A =\(\frac{3}{5}.\left(\frac{5}{9.14}+\frac{5}{14.19}+...+\frac{5}{\left(5n-1\right).\left(5n+4\right)}\right)\)
= \(\frac{3}{5}.\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{5n-1}-\frac{1}{5n+4}\right)\)
= \(\frac{3}{5}.\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)
= \(\frac{3}{5}.\frac{1}{9}-\frac{3}{5}.\frac{1}{5n+4}=\frac{1}{15}-\frac{3}{5.\left(5n+4\right)}< \frac{1}{15}\)( ĐPCM )
\(\frac{3}{9.14}+\frac{3}{14.19}+\frac{3}{19.24}+....+\frac{3}{\left(5n+1\right)\left(5n+4\right)}\)
\(=\frac{3}{5}\left(\frac{5}{9.14}+\frac{5}{14.19}+\frac{5}{19.24}+....+\frac{5}{\left(5n+1\right)\left(5n+4\right)}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+....+\frac{1}{5n+1}-\frac{1}{5n+4}\right)\)
\(=\frac{3}{5}\left(\frac{1}{9}-\frac{1}{5n+4}\right)\)
\(=\frac{1}{15}-\frac{3}{5\left(5n+4\right)}< \frac{1}{15}\) (đpcm)