K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2017

y = sin2x

Hàm số có chu kỳ T = π

Xét hàm số y=sin2x trên đoạn [0; π ], ta có:

y' = 2cos2x

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó trên đoạn [0; π ] , hàm số đạt cực đại tại  π /4 , đạt cực tiểu tại 3 π /4 và y CD  = y( π /4) = 1;  y CT  = y(3 π /4) = −1

Vậy trên R ta có:

y CD  = y( π /4 + k π ) = 1;

y CT  = y(3 π /4 + k π ) = −1, k ∈ Z

17 tháng 4 2017

a) y = sin2x

Hàm số có chu kỳ T = π

Xét hàm số y=sin2x trên đoạn [0;π], ta có:

y' = 2cos2x

y' = 0 ⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Bảng biến thiên:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó trên đoạn [0;π] , hàm số đạt cực đại tại π/4 , đạt cực tiểu tại 3π/4 và y C D  = y(π/4) = 1; y C T  = y(3π/4) = −1

Vậy trên R ta có:

y C Đ  = y(π/4 + kπ) = 1;

y C T  = y(3π/4 + kπ) = −1, k∈Z

b) Hàm số tuần hoàn chu kỳ nên ta xét trên đoạn [−π;π].

y′ = − sinx – cosx

y′ = 0 ⇔ tanx = −1 ⇔ x = −π4 + kπ, k∈Z

Lập bảng biến thiên trên đoạn [−π;π]

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hàm số đạt cực đại tại x = −π4 + k2π , đạt cực tiểu tại x = 3π4 + k2π (k∈Z) và

y C Đ  = y(−π4 + k2π) = 2 ;

y C T  = y(3π4 + k2π) = − 2  (k∈Z).

c) Ta có:


Do đó, hàm số đã cho tuần hoàn với chu kỳ π.

Ta xét hàm số y trên đoạn [0;π]:


y′ = sin2x

y′ = 0 ⇔ sin2x = 0 ⇔ x = kπ/2 (k∈Z)

Lập bảng biến thiên trên đoạn [0,π]


Từ đó, ta thấy hàm số đạt cực tiểu tại x = kπ/2 với k chẵn, đạt cực đại tại x = kπ/2 với k lẻ, và

y C T  = y(2mπ) = 0; yCT = y(2mπ) = 0;

y C Đ  = y((2m+1)π/2) = 1 (m∈Z)

23 tháng 4 2019

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó, hàm số đã cho tuần hoàn với chu kỳ π

Ta xét hàm số y trên đoạn [0; π ]:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

y′ = sin2x

y′ = 0 ⇔ sin2x = 0 ⇔ x = k π /2 (k ∈ Z)

Lập bảng biến thiên trên đoạn [0, π ]

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Từ đó, ta thấy hàm số đạt cực tiểu tại x = k π /2 với k chẵn, đạt cực đại tại x = k π /2 với k lẻ, và

y CT  = y(2m π ) = 0;  y CT  = y(2m π ) = 0;

y CD  = y((2m+1) π /2) = 1 (m ∈ Z)

25 tháng 7 2018

TXĐ: D = R

+ y' = 2cos2x – 1;

Giải bài 2 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

+ y" = -4.sin2x

Giải bài 2 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Giải bài 2 trang 18 sgk Giải tích 12 | Để học tốt Toán 12 (k ∈ Z) là các điểm cực đại của hàm số.

Giải bài 2 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

⇒ Giải bài 2 trang 18 sgk Giải tích 12 | Để học tốt Toán 12 (k ∈ Z) là các điểm cực tiểu của hàm số.

3 tháng 2 2016

Hỏi đáp Toán

31 tháng 5 2017

TXĐ: R

y' = 1 - 2cos2x

y' = 0 ⇔x = kπ (k ∈ Z)

y'' = 2sin2x

x = kπ → y'' = 2 > 0

→ yCT = 1 tại x = kπ

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

22 tháng 6 2017

15 tháng 11 2019

4 tháng 1 2018

16 tháng 6 2018

Đáp án A