Cho tam giác ABC có AB = AC. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD = AE.
Gọi O là giao điểm của BE và CD
Chứng minh rằng ΔBOD=COE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Xét 2 tam giác BDE và CED có
BD=EC
DE chung
Góc BDE = góc DEC do chúng lần lượt bù với 2 góc bằng nhau là ADE và AED
=> dpcm (c.g.c)
b/ Có góc DKB bằng góc EKC do đối đỉnh
KD=KE
góc BDK=góc CEK
Vậy tam giác BOD = tam giác COE
a/ Xét tam giác ABE và tam giác ACD có :
AD = AE , góc A là góc chung của hai tam giác , AB = AC
=> tam giác ABE = tam giác ACD => CD = BE
b/ Dễ dàng chứng minh đc tam giác BED = tam giác CDE (c.c.c)
=> góc CED = góc CDE => tam giác ODE cân tại O => OD = OE (1)
Lại có BE = CD => OB = OC (2) ; góc BOD = góc EOC (đối đỉnh) (3)
Từ (1) , (2) , (3) suy ra tam giác BOD = tam giác OCE (c.g.c)
a) Xét tam giác ABE và tam giác ACD:
có+AB=AC(gt)
+A: góc chung
+AD=AE(gt)
Vậy tam giác ABE=tam giác ACD(c.g.c)
=> BE=CD( 2 cạnh tương ứng )
b)
nên: ABD=ACE( 2 góc tương ứng )
có:+ góc BOD=COE( đối đỉnh)
+AB=AC( tam giác ABC cân vì có 2 cạnh bên bằng nhau) mà AD=AE(gt)=>BD=CE
+góc ABE=ACD(cmt)
Vậy tam giác BOD=COE(g.c.g)
^...^ ^_^
a: Xét ΔAEB và ΔADC có
AE=AD
\(\widehat{DAC}\) chung
AB=AC
Do đó: ΔAEB=ΔADC
Suy ra: BE=CF
b: Ta có: AD+DB=AB
AE+EC=AC
mà AD=AE
và AB=AC
nên DB=EC
Xét ΔDBC và ΔECB có
DB=EC
\(\widehat{DBC}=\widehat{ECB}\)
BC chung
Do đó: ΔDBC=ΔECB
Suy ra: \(\widehat{ODB}=\widehat{OEC}\)
Xét ΔODB và ΔOEC có
\(\widehat{ODB}=\widehat{OEC}\)
BD=EC
\(\widehat{DBO}=\widehat{ECO}\)
Do đó: ΔODB=ΔOEC
AB = AC (gt)
=> Tam giác ABC cân tại A
Xét tam giác EAB và tam giác DAC có:
EA = DA (gt)
A chung
AB = AC (gt)
=> Tam giác EAB = Tam giác DAC (c.g.c)
=> EB = DC (2 cạnh tương ứng)
EBA = DCA (2 góc tương ứng)
mà ABC = ACB (tam giác ABC cân tại A)
=> ABC - EBA = ACB - DCA
hay EBC = DCB
=> Tam giác OBC cân tại O
Xét tam giác BOD và tam giác COE có:
DBO = ECO (tam giác EAB = tam giác DAC)
BO = CO (tam giác OBC cân tại O)
BOD = COE (2 góc đối đỉnh)
=> Tam giác BOD = Tam giác COE (c.g.c)
a) Xét ∆BEA và ∆CDA, ta có:
BA = CA (gt)
\(\widehat{A}\)chung
AE = AD (gt)
Suy ra: ∆BEA = ∆CDA (c.g.c)
Vậy BE = CD (hai cạnh tương ứng)
b) ∆BEA = ∆CDA (chứng minh trên)
⇒\(\widehat{\text{B1}}=\widehat{\text{C1}}\);\(\widehat{\text{E1}}=\widehat{\text{D1}}\) (hai góc tương ứng)
\(\widehat{\text{E1}}+\widehat{\text{E2}}\)=180o (hai góc kề bù)
\(\widehat{\text{D1}}+\widehat{\text{D2}}\)=180o (hai góc kề bù)
Suy ra: \(\widehat{\text{E2}}=\widehat{\text{D2}}\)
AB = AC (gt)
⇒ AE + EC = AD + DB mà AE = AD (gt) => EC = DB
Xét ∆ODB và ∆OCE, ta có:
\(\widehat{\text{E2}}=\widehat{\text{D2}}\) (chứng minh trên)
DB = EC (chứng minh trên)
\(\widehat{\text{B1}}=\widehat{\text{C1}}\)(chứng minh trên)
Suy ra: ∆ODB = ∆OEC (g.c.g)
ΔBEA= ΔCDA (chứng minh trên)
⇒∠(B1 ) =∠(C1 ) ;∠(E1 ) =∠(D1 ) (hai góc tương ứng) (1)
+) Ta có: ∠(E1 ) +∠(E2 ) =180o (hai góc kề bù) (2)
Và ∠(D1 ) +∠(D2 ) =180o (hai góc kề bù) (3)
Từ (1); (2) và (3) suy ra: ∠(E2 ) =∠(D2 )
+) Theo giả thiết ta có; AB = AC
Và AD = AE
Lấy vế trừ vế, suy ra:
AB - AD = AC - AE hay BD = CE
Xét ΔOEC và ΔOCE, ta có:
∠(D2 ) =∠(E2 ) (chứng minh trên)
DB=EC (chứng minh trên)
∠(B1 ) =∠(C1 ) (chứng minh trên)
Suy ra: ΔODB= ΔOCE ( g.c.g)