K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2019

Tương tự 5. Tính được B 1 ^  = 60° và B 2 ^ = A 2 ^ = 120°.

16 tháng 7 2019

a) Vì B 2 ^ , A 1 ^  là cặp góc trong cùng phía nên ta có:

B 2 ^ + A 1 ^ = 180 0 ⇒ A 1 ^ = 180 0 − B 2 ^ = 180 0 − 45 0 = 135 0 .

b) Ta có B ^ 1 = A ^ 1 = 135 ∘  (hai góc đồng vị)

mà A ^ 3 = A ^ 1 = 135 ∘  (hai góc đối đỉnh)

Vậy  B ^ 1 = A ^ 3 = 135 ∘

c) Ta có A ^ 1 + A ^ 2 = 180 ∘ (hai góc kề bù) mà B ^ 1 = A ^ 1  (theo câu b)

Do đó  A ^ 2 + B ^ 1 = 180 ∘

22 tháng 5 2021

`1/a^2+1/b^2+1/c^2<=(a+b+c)/(abc)`
`<=>1/a^2+1/b^2+1/c^2<=1/(ab)+1/(bc)+1/(ca)`
`<=>2/a^2+2/b^2+2/c^2<=2/(ab)+2/(bc)+2/(ca)`
`<=>1/a^2-2/(ab)+1/b^2+1/b^2-2/(bc)+1/c^2+1/c^2-2/(ac)+1/a^2<=0`
`<=>(1/a-1/b)^2+(1/b-1/c)^2+(1/c-1/a)^2<=0`
Mà `(1/a-1/b)^2+(1/b-1/c)^2+(1/c-1/a)^2>=0`
`=>(1/a-1/b)^2+(1/b-1/c)^2+(1/c-1/a)^2=0`
`<=>1/a=1/b=1/c`
`<=>a=b=c`
`=>` tam giác này là tam giác đều
`=>hata=hatb=hatc=60^o`

22 tháng 5 2021

Áp dụng bđt cosi với hai số dương:

\(\dfrac{1}{a^2}+\dfrac{1}{b^2}\ge\dfrac{2}{ab}\)     ; \(\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{2}{bc}\)      ; \(\dfrac{1}{a^2}+\dfrac{1}{c^2}\ge\dfrac{2}{ac}\)

\(\Rightarrow2\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\right)\ge2\left(\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\right)\)

\(\Leftrightarrow\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\ge\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ac}\)  (*)

Theo giả thiết có: \(\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}\le\dfrac{1}{bc}+\dfrac{1}{ac}+\dfrac{1}{ab}\)  (2*)

Từ (*), (2*) ,dấu = xảy ra \(\Leftrightarrow a=b=c\)

=> Tam giác chứa ba cạnh a,b,c thỏa mãn gt là tam giác đều

=> Số đo các góc là 60 độ

 

24 tháng 12 2023

a: Ta có: AC\(\perp\)AB

BD\(\perp\)AB

Do đó: AC//BD

b: bạn vẽ lại hình nha bạn

6 tháng 1 2019

17 tháng 10 2021

nhoxbun2012 ơi cậu trình bày rõ ràng lời giải ra đc ko

12 tháng 11 2021

a, Vì a//b và b⊥c nên a⊥c

b, Ta có \(\widehat{D_2}=\widehat{D_4}=65^0\) (đối đỉnh)

Vì a//b nên \(\widehat{C_4}=\widehat{D_2}=65^0\) (so le trong)

\(\widehat{C_3}+\widehat{C_4}=180^0\) (kề bù)

Hay \(\widehat{C_3}=180^0-65^0=115^0\)

15 tháng 10 2021

MÌNH CẦN GẤP Ạ!

15 tháng 10 2021

1, Vì \(a\perp BC;b\perp BC\) nên a//b

2, Ta có \(\widehat{A_1}=\widehat{A_2}=60^0\left(đối.đỉnh\right)\)

Vì a//b nên \(\widehat{A_2}=\widehat{D_1}=60^0\left(đồng.vị\right)\)

Ta có \(\widehat{D_2}+\widehat{D_1}=180^0\left(kề.bù\right)\Rightarrow\widehat{D_2}=180^0-60^0=120^0\)

18 tháng 11 2021

120o

10 tháng 1 2019

Do AB//CD

=) \(\widehat{A}\)+\(\widehat{D}\)=1800 (2 góc vị trí trong cùng phía )

  1000 + \(\widehat{D}\)=1800

             \(\widehat{D}\)=1800 - 1000

           \(\widehat{D}\)= 800

Xét tứ giác ABCD có :

\(\widehat{A}\)+\(\widehat{B}\)+\(\widehat{C}\)+\(\widehat{D}\)=3600

1000+1200+\(\widehat{C}\)+800 =3600

 3000 +\(\widehat{C}\)=3600

         \(\widehat{C}\)= 600

2) Từ B kẻ BE \(\perp\)CD

Xét tam giác ADH (\(\widehat{AH\text{D}}\)=900) và BCE (\(\widehat{BEC}\)=900) có:

           AD=BC (tính chất hình thang cân)

          \(\widehat{A\text{D}H}\)=\(\widehat{BCE}\)(tính chất hình thang cân)

=) Tam giác ADH = Tam giác BCE (cạch huyền - góc nhọn )

=)  DH= CE (2 cạch tương ứng )

Do AB//CD Mà AH\(\perp\)CD=) AH\(\perp\)AB

Xét tứ giác ABEH có

\(\widehat{BAH}\)\(\widehat{AHE}\) = \(\widehat{BEH}\) = 900

=) Tứ giác ABEH lá hình chữ nhật =) AB=HE=10 cm

Ta có : DH+HE+EC= 20 cm

         2DH+10=20

         2DH =10

           DH = 5 (cm)

xét tam giác vuông AHD 

Áp dụng định lí Pitago ta có

AD2=AH2+HD2

AD2=122+52

AD2= 144+25=169

AD=13 cm (đpcm)