K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2018

có 6 số nguyên thoả mãn là

( -2 , -1 , 0 , 1 , 2 , 3 )

k mình nha

8 tháng 2 2022

TL :

A nha bạn

8 tháng 2 2022

(x+2). (x+4) <0

TH1: (x+2) <0 và (x+4) >0

<=> x< -2 và x> -4

<=>x=3

TH2: (x+2) > 0 và (x+4)<0

<=> x> -2 và x< -4

Loại

=> Chỉ có 1 số thoả mãn là -3

28 tháng 6 2023

 Bài 1: Bài này số nhỏ nên chỉ cần chặn miền giá trị của \(x\) rồi xét các trường hợp thôi nhé. Ta thấy \(3^x< 35\Leftrightarrow x\le3\). Nếu \(x=0\) thì \(VT=2\), vô lí. Nếu \(x=1\) thì \(VT=5\), cũng vô lí. Nếu \(x=2\) thì \(VT=13\), vẫn vô lí. Nếu \(x=3\) thì \(VT=35\), thỏa mãn. Vậy, \(x=3\).

 Bài 2: Nếu \(x=0\) thì pt đã cho trở thành \(0!+y!=y!\Leftrightarrow0=1\), vô lí,

Nếu \(x=y\) thì pt trở thành \(2x!=\left(2x\right)!\) \(\Rightarrow\left(x+1\right)\left(x+2\right)...\left(2x\right)=2\) \(\Leftrightarrow x=1\Rightarrow y=1\)

Nếu \(x\ne y\) thì không mất tính tổng quát, giả sử \(1< y< x\) thì \(x!+y!< 2x!\le\left(x+1\right)x!=\left(x+1\right)!< \left(x+y\right)!\) nên pt đã cho không có nghiệm trong trường hợp này.

Như vậy, \(x=y=1\)

 Bài 3: Bổ sung đề là pt không có nghiệm nguyên dương nhé, chứ nếu nghiệm nguyên thì rõ ràng \(\left(x,y\right)=\left(0,19\right)\) là một nghiệm cũa pt đã cho rồi.

Giả sử pt đã cho có nghiệm nguyên dương \(\left(x,y\right)\)

Khi đó \(x,y< 19\). Không mất tính tổng quát ta có thể giả sử \(1< y\le x< 19\). Khi ấy \(x^{17}+y^{17}=19^{17}\ge\left(x+1\right)^{17}=x^{17}+17x^{16}+...>x^{17}+17x^{16}\), suy ra \(y^{17}>17x^{16}\ge17y^{16}\) \(\Rightarrow y>17\). Từ đó, ta thu được \(17< y\le x< 19\) nên \(x=y=18\). Thử lại thấy không thỏa mãn. 

Vậy pt đã cho không có nghiệm nguyên dương.

 

28 tháng 6 2023

Chị độc giải sau khi em biết làm thôi à.

12 tháng 2 2022

tk

Ta có (x+3)(x+5)≥0(x+3)(x+5)≥0

Trường hợp 1: {x+3≥0x+5≥0{x+3≥0x+5≥0⇔{x≥−3x≥−5⇔{x≥−3x≥−5⇔x≥−3⇔x≥−3

Trường hợp 2: {x+3≤0x+5≤0{x+3≤0x+5≤0⇔{x≤−3x≤−5⇔{x≤−3x≤−5⇔x≤−5⇔x≤−5

Vậy để thỏa mãn (x+3)(x+5)≥0(x+3)(x+5)≥0 thì x≥−3x≥−3 hoặc x≤−5x≤−5

Suy ra có vô số số nguyên x 

Đáp án B

Chọn B

8 tháng 2 2022

Ta có \(\left(x+3\right)\left(x+5\right)\ge0\)

Trường hợp 1: \(\left\{{}\begin{matrix}x+3\ge0\\x+5\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3\\x\ge-5\end{matrix}\right.\)\(\Leftrightarrow x\ge-3\)

Trường hợp 2: \(\left\{{}\begin{matrix}x+3\le0\\x+5\le0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le-3\\x\le-5\end{matrix}\right.\)\(\Leftrightarrow x\le-5\)

Vậy để thỏa mãn \(\left(x+3\right)\left(x+5\right)\ge0\) thì \(x\ge-3\) hoặc \(x\le-5\)

Suy ra có vô số số nguyên x 

Đáp án B

4 tháng 1 2016

xy + 3x - 2y = 11

x(y + 3) - 2y = 11

x(y + 3) - 2y - 6 = 11 - 6

x( y  +3) - 2(y + 3) = 5

(x - 2)(y  +3) = 5

Bạn liệt kê bảng ra 

4 tháng 1 2016

xy + 3x-2y=11 
<=> x(y+3)-2(y+3)=5 
<=>(x-2)(y+3)=5 
suy ra (x-2) và (y+3) là các ước nguyên của 5. 
Th1. x-2=1 <=>x=3 
.......y+3=5 <=> y=2 
Th2 x-2=-1 <=> x=1 
.......y+3=-5 <=> y= -8 
Th3. x-2=5 <=> x=7 
.......y+3=1 <=> y= -2 
Th4. x-2= -5 <=> x= -3 
.......y+3= -1 <=> y= -4 

Vậy (x,y) = (3, 2); (1, -8); (7, -2); (-3, -4)

=> có 4 cặp số => 8 số

23 tháng 11 2021

\(\Rightarrow-3< x< 2\\ \Rightarrow x\in\left\{-2;-1;0;1\right\}\\ \Rightarrow B\)

23 tháng 11 2021

B     nhé

>_<