tìm 3 số nguyên tố mà tích cảu chúng bằng 5 lần tổng của chúng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì a , b , c là 3 số nguyên tố khác nhau và có vai trò cùa a, b,c như nhau . Giả sử a > b > c => 3a > a + b + c
=> 3(a+b+c) < 9a => a.b.c < 9 a => b . c < 9 (a > 0) => b . c < 9 mà b và c là hai số nguyên tố
=> b = 3 và c = 2 và a = 5 . Thử lại 3(5+3+2)=5.3.2 (đúng)
Đáp số a = 5
b = 3
c = 2
3. => 1 trong 2 số phải là 1(tích của 2 số tự nhiên khác 1 là hợp số)
=> số thứ 2 là 2
gọi 3 số nguyên tố là a b c
=> abc = 5(a + b +c )
Do a, b, c nguyên tố ; 5 ( a+b+c) chia hết cho 5 => abc phải có một số chia hết cho 5 . a ;b;c nguyên tố => giả sử a= 5
=> 5bc=5(5+b+c) => bc= 5 + b + c
=> b-bc + c + 5 = 0
=> b (1 -c) - (1 - c) = -6
=> (b-1)(c-1)=6
b; c nguyên tố => b-1 và c-1 là 2 số tự nhiên
Giải (b-1)(c-1)=6
Tìm dc (b;c) =(2;7) , (7;2)
Vậy (a;b;c) là (2;5;7) hoán vị
Gọi 3 số nguyên tố đó là a,b,c
Ta có: abc =5(a+b+c)
=> abc chia hết cho 5, do a,b,c nguyên tố
=> chỉ có trường hợp 1 trong 3 số =5, giả sử là a =5
=> bc = b+c +5 => (b-1)(c-1) = 6
{b-1 =1 => b=2; c-1 =6 => c=7
{b-1=2, c-1=3 => c=4 (loại)
Vậy 3 số nguyên tố đó là 2, 5, 7
-Gọi 3 số nguyên tố đó là a;b;c.
-Ta có: 5.(a+b+c)= abc.
=> 1/ab +1/bc +1/ac=1/5.
-Giả sử a>=b>=c (a,b,c vai trò như nhau).
=> ab>=ac>=bc.
=> 1/ab=< 1/ac=< 1/bc. => 3/bc>=1/ab +1/ac +1/bc= 1/5 =3/15.
=> bc=< 15.
-Đến đây thì bạn thử b.c vào thì thấy có b=5; c=2 thỏa mãn.
=> 5.(a+5+2)= a.5.2.
=> a=7.
Vậy (a;b;c)=(7;5;2) và các hoán vị.
1>
Gọi 3 số nguyên tố đó là a,b,c
Ta có: abc =5(a+b+c)
=> abc chia hết cho 5, do a,b,c nguyên tố
=> chỉ có trường hợp 1 trong 3 số =5, giả sử là a =5
=> bc = b+c +5 => (b-1)(c-1) = 6
{b-1 =1 => b=2; c-1 =6 => c=7
{b-1=2, c-1=3 => c=4 (loại)
Vậy 3 số nguyên tố đó là 2, 5, 7
2>
Với p=3 thì 2p+1 =7, 4p+1 = 13 là các số nguyên tố
Với p>3
* Do p nguyên tố nên ko chia hết cho 3
Nếu p = 3k +1 => 2p + 1 = 6k +3 chia hết cho 3
=> ko tồn tại số nguyên tố dạng 3k+1
Nếu p = 3k +2 => 4p + 1 = 12k +9 chia hết cho 3
=> ko tồn tại số nguyên tố dạng 3k+2
Vậy p=3 là duy nhất
chtt hoặc ba số đó là 2;5;7