Trong các hàm số sau, hàm số nào có hai điểm cực đại và một điểm cực tiểu?
A. y = x4 – x2 + 3
B. y = -x4 – x2 + 3
C. y = -x4 + x2 + 3
D. y = x4 + x2 + 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: B.
Vì a < 0 và y' = 0 có ba nghiệm phân biệt nên hàm số y = a x 4 + b x 2 + c có hai cực đại, một cực tiểu.
Ở đây y' = -4 x 3 + 8x; y' = 0 ⇔ -4x( x 2 - 2) = 0
⇔
Đáp án: B.
Vì a < 0 và y' = 0 có ba nghiệm phân biệt nên hàm số y = a x 4 + b x 2 + c có hai cực đại, một cực tiểu.
Ở đây y' = -4 x 3 + 8x; y' = 0 ⇔ -4x( x 2 - 2) = 0
⇔
Đáp án: D.
Hàm số y = x 4 - 5 x 2 + 4 xác định trên R.
y' = 4 x 3 - 10x = 2x(2 x 5 - 5);
y' = 0 khi
y'' = 12 x 2 - 10
Vì y''(0) = -10 < 0,
nên hàm số chỉ có một cực đại (tại x = 0)
Cách khác: Vì a > 0 và y' = 0 có ba nghiệm phân biệt nên hàm số y = a x 4 + b x 2 + c có một cực đại
Đáp án: D.
Hàm số y = x 4 - 5 x 2 + 4 xác định trên R.
y' = 4 x 3 - 10x = 2x(2 x 2 - 5);
y' = 0 khi
y'' = 12 x 2 - 10
Vì y''(0) = -10 < 0,
nên hàm số chỉ có một cực đại (tại x = 0)
Cách khác: Vì a > 0 và y' = 0 có ba nghiệm phân biệt nên hàm số y = a x 4 + b x 2 + c có một cực đại
Đáp án: C
Ta có y(0) = 2, y(a) = a 4 + 3a x 2 + 2 > 2 với mọi a ≠ 0.
Vậy hàm số có một điểm cực tiểu là x = 0.
Đáp án: C
Ta có y(0) = 2, y(a) = a 4 + 3a x 2 + 2 > 2 với mọi a ≠ 0.
Vậy hàm số có một điểm cực tiểu là x = 0.
Đáp án C
Ta có: y’ = 4x3 + 2x
ð y’ ≥ 0 ⇔ x = 0
Ta có bảng biến thiên
Vậy hàm số chỉ có duy nhất 1 cực trị
Đáp án C.
Hàm số bậc 4 có hai điểm cực đại và một điểm cực tiểu