Phương trình x^3 +ax+b =0 có 3 nghiệm tạo thành 1 cấp số cộng khi
A. b = 0 , a < 0
B. b = 0 , a = 1
C. b = 0 , a > 0
D. b > 0 , a > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nghiệm chung x (nếu có) của hai phương trình là nghiệm của hệ:
Lấy (1) trừ (2) vế trừ vế ta được:
ax + 1+ x+ a = 0
⇔ ( ax+ x) + (1+ a) =0
⇔ (a+ 1).x+ (1+ a) = 0
⇔ ( a+ 1) . (x+1)=0
⇔ a = - 1 hoặc x= -1
* Với a = -1 thay vào (2) ta được: x 2 - x + 1 = 0 phương trình này vô nghiệm
vì ∆ = ( - 1 ) 2 – 4 . 1 . 1 = - 3 < 0
nên loại a = -1.
*Thay x = -1 vào (2) suy ra a = 2.
Vậy với a = 2 thì phương trình có nghiệm chung là x = -1
Vậy chọn câu C.
Nghiệm chung x (nếu có) của hai phương trình là nghiệm của hệ:
Lấy (1) trừ (2) vế trừ vế ta được:
ax + 1+ x+ a = 0
⇔ ( ax+ x) + (1+ a) =0
⇔ (a+ 1).x+ (1+ a) = 0
⇔ ( a+ 1) . (x+1)=0
⇔ a = - 1 hoặc x= -1
* Với a = -1 thay vào (2) ta được: x 2 - x + 1 = 0 phương trình này vô nghiệm
vì ∆ = ( - 1 ) 2 – 4 . 1 . 1 = - 3 < 0
nên loại a = -1.
*Thay x = -1 vào (2) suy ra a = 2.
Vậy với a = 2 thì phương trình có nghiệm chung là x = -1
Vậy chọn câu C.
Đáp án B
Giả sử phương trình đã cho có ba nghiệm phân biệt là x 1 , x 2 , x 3 theo thứ tự đó lập thành một cấp số cộng.
Suy ra 2 x 2 = x 1 + x 3 .
Lại có x − x 1 x − x 2 x − x 3 = 0 ⇔ x 3 − x 1 + x 2 + x 3 x 2 + x 1 x 2 + x 2 x 3 + x 3 x 1 x − x 1 x 2 x 3 = 0 .
Đồng nhất với phương trình x 3 + a x + b = 0 .
Suy ra x 1 + x 2 + x 3 = 0 ⇒ x 2 = 0
Thay x 2 = 0 vào phương trình đã cho ⇒ b = 0
Phương trình đã cho trở thành x 3 + a x = 0 ⇔ x = 0 x 2 + a = 0 1
Để phương trình đã cho có 3 nghiệm phân biệt thì phương trình (1) có hai nghiệm phân biệt
⇒ a < 0
Vậy b = 0, a < 0 .
Ta có:
\(\Delta_1+\Delta_2+\Delta_3=a^2-4b+b^2-4c+c^2-4a=a^2+b^2+c^2-48\)
Dễ thấy:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=48\Rightarrow\Delta_1+\Delta_2+\Delta_3\ge0\)
Khi đó có ít nhất một phương trình có nghiệm