Cho tam giác DEF và tam giác JIK có: EF=IK; D ^ = J ^ = 90 o . Cần thêm một điều kiện gì để ΔDEF=ΔJIK theo trường hợp cạnh huyền - góc vuông?
A. DE = JK
B. DF = JI
C. DE = JI
D. E ^ = I ^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Xét tam giác DEF có:
+ A là trung điểm của DE (gt).
+ B là trung điểm của DF (gt).
\(\Rightarrow\) AB là đường trung bình của tam giác DEF.
\(\Rightarrow\) AB // EF và AB = \(\dfrac{1}{2}\) EF (Tính chất đường trung bình trong tam giác).
2) Xét tam giác DEF vuông tại D có:
DA là đường trung tuyến (A là trung điểm của EF).
\(\Rightarrow\) DA = \(\dfrac{1}{2}\) EF (Tính chất đường trung tuyến trong tam giác vuông).
3) Xét tam giác DEF có:
+ DB là đường trung tuyến (B là trung điểm của EF).
+ DB = \(\dfrac{1}{2}\) EF (gt).
\(\Rightarrow\) Tam giác DEF vuông tại D.
D E F I K
Giải: a) Ta có: DE2 + DF2 = 32 + 42 = 9 + 16 = 25
EF2 = 52 = 25
=> DE2 + DF2 = EF2 => DEF là t/giác vuông (theo định lí Pi - ta - go đảo)
b) Xét t/giác DEF có DI là đường trung tuyến
=> DI = EI = IF = 1/2EF = 1/2.5 = 2,5 (cm)
c) Ta có: DI = IF => t/giác DIF là t/giác cân
có IK là đường cao
=> IK đồng thời là đường trung tuyến
=> DK = KF = 1/2 DF = 1/2.4 = 2 (cm)
Áp dụng định lí Pi - ta - go vào t/giác IDK vuông tại K, ta có:
DI2 = IK2 + DK2
=> IK2 = DI2 - DK2 = 2,52 - 22 = 2,25
=> IK = 1,5 (cm)
a) Ta có: \(DE^2+DF^2=3^2+4^2=25\left(cm\right)\)
và \(EF^2=5^2=25\left(cm\right)\)
\(\Rightarrow DE^2+DF^2=EF^2\)
\(\Delta DEF\)có ba cạnh thỏa mãn định lý Py - ta - go nên \(\Delta DEF\) vuông
b) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=\frac{1}{2}EF\)
\(\Rightarrow DI=\frac{1}{2}.5=2,5\left(cm\right)\)
c) Vì DI là trung tuyến ứng với cạnh huyền của tam giác vuông \(DEF\)nên \(DI=FI=EI\)
Lại có IK vuông góc DF
\(\Rightarrow\)IK là đường trung trực của đoạn thẳng DF
\(\Rightarrow IK=\frac{1}{2}DF=\frac{1}{2}.4=2\left(cm\right)\)
Xét ΔABC vuông tại A và ΔDEF vuông tại D có
BC=EF(gt)
AC=DF(gt)
Do đó: ΔABC=ΔDEF(cạnh huyền-cạnh góc vuông)
Cách 1:
Xét tam giác $ABC$ và $DEF$ có:
$\widehat{A}=\widehat{D}=90^0$
$BC=EF$
$AC=DF$
$\Rightarrow \triangle ABC=\triangle DEF$ (ch-gcv)
Cách 2:
Vì $BC=EF; AC=DF\Rightarrow BC^2-AC^2=EF^2-DF^2$ hay $BA^2=ED^2$
$\Leftrightarrow BA=ED$ (theo định lý Pitago)
Hai tam giác $ABC$ và $DEF$ có các cạnh $AB=DE, BC=EF, AC=DF$ nên bằng nhau theo TH c.c.c
ta thấy 3x3+4x4=5x5 nên nó là tam giác vuông
diện tích là S=1/2x3x4=6(cm2)
chúc bạn học tốt
HYC-23/1/2022