Tính tổng của hai đa thức
A = 2 x 3 + x 2 - 4 x + 2 x 3 + 5 v à B = 6 x + 3 x 3 - 2 x + x 2 - 5
A. 7 x 3 - 2 x 2 - 10
B. 7 x 3 + 2 x 2 + 2 x
C. 7 x 3 + 2 x 2
D. 5 x 3 + 2 x 2 - x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(x^4-5x^3+4x-5-x^4+3x^2+2x+1\)
\(=-5x^3+3x^2+6x-4\)
b. \(R\left(x\right)=x^4-5x^3+4x-5-\left(-x^4+3x^2+2x+1\right)\)
\(=x^4-5x^3+4x-5+x^4-3x^2-2x-1\)
\(=2x^4-5x^3-3x^2+2x-6\)
Tổng 2 đa thức:
\(\begin{array}{l}A(x) + B(x) = - 8{x^5} + 6{x^4} + 2{x^2} - 5x + 1 + 8{x^5} + 8{x^3} + 2x - 3\\ = ( - 8 + 8){x^5} + 6{x^4} + 8{x^3} + 2{x^2} + ( - 5 + 2)x + (1 - 3)\\ = 6{x^4} + 8{x^3} + 2{x^2} - 3x - 2\end{array}\)
Vậy bậc của hai đa thức là tổng là: 4.
Hiệu 2 đa thức:
\(\begin{array}{l}A(x) - B(x) = - 8{x^5} + 6{x^4} + 2{x^2} - 5x + 1 - (8{x^5} + 8{x^3} + 2x - 3)\\ = - 8{x^5} + 6{x^4} + 2{x^2} - 5x + 1 - 8{x^5} - 8{x^3} - 2x + 3\\ = ( - 8 - 8){x^5} + 6{x^4} - 8{x^3} + 2{x^2} + ( - 5 - 2)x + (1 + 3)\\ = - 16{x^5} + 6{x^4} - 8{x^3} + 2{x^2} - 7x + 4\end{array}\)
Vậy bậc của hai đa thức là hiệu là: 5
\(\begin{array}{l}A + B = \left( {5{x^2}y + 5x - 3} \right) + \left( {xy - 4{x^2}y + 5x - 1} \right)\\ = 5{x^2}y + 5x - 3 + xy - 4{x^2}y + 5x - 1\\ = \left( {5{x^2}y - 4{x^2}y} \right) + xy + \left( {5x + 5x} \right) + \left( { - 3 - 1} \right)\\ = {x^2}y + xy + 10x - 4\end{array}\)
a)
\(\begin{array}{l}P(x) = 5{x^3} + 2{x^4} - {x^2} + 3{x^2} - {x^3} - 2{x^4} - 4{x^3}\\ = \left( {2{x^4} - 2{x^4}} \right) + \left( {5{x^3} - {x^3} - 4{x^3}} \right) + \left( { - {x^2} + 3{x^2}} \right)\\ = 0 + 0 + 2{x^2}\\ = 2{x^2}\\Q(x) = 3x - 4{x^3} + 8{x^2} - 5x + 4{x^3} + 5\\ = \left( { - 4{x^3} + 4{x^3}} \right) + 8{x^2} + \left( {3x - 5x} \right) + 5\\ = 0 + 8{x^2} + ( - 2x) + 5\\ = 8{x^2} - 2x + 5\end{array}\)
b) P(1) = 2.12 = 2
P(0) = 2. 02 = 0
Q(-1) = 8.(-1)2 – 2.(-1) +5 = 8 +2 +5 =15
Q(0) = 8.02 – 2.0 + 5 = 5
\(\begin{array}{l}A + B = (6{x^4} - 4{x^3} + x - \dfrac{1}{3}) + ( - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3})\\ = 6{x^4} - 4{x^3} + x - \dfrac{1}{3} - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3}\\ = (6{x^4} - 3{x^4}) + ( - 4{x^3} - 2{x^3}) - 5{x^2} + (x + x) + ( - \dfrac{1}{3} + \dfrac{2}{3})\\ = 3{x^4} - 6{x^3} - 5{x^2} + 2x + \dfrac{1}{3}\\A - B = (6{x^4} - 4{x^3} + x - \dfrac{1}{3}) - ( - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3})\\ = 6{x^4} - 4{x^3} + x - \dfrac{1}{3} + 3{x^4} + 2{x^3} + 5{x^2} - x - \dfrac{2}{3}\\ = (6{x^4} + 3{x^4}) + ( - 4{x^3} + 2{x^3}) + 5{x^2} + (x - x) + ( - \dfrac{1}{3} - \dfrac{2}{3})\\ = 9{x^4} - 2{x^3} + 5{x^2} - 1\end{array}\)\(\begin{array}{l}A + B = (6{x^4} - 4{x^3} + x - \dfrac{1}{3}) + ( - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3})\\ = 6{x^4} - 4{x^3} + x - \dfrac{1}{3} - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3}\\ = (6{x^4} - 3{x^4}) + ( - 4{x^3} - 2{x^3}) - 5{x^2} + (x + x) + ( - \dfrac{1}{3} + \dfrac{2}{3})\\ = 3{x^4} - 6{x^3} - 5{x^2} + 2x + \dfrac{1}{3}\\A - B = (6{x^4} - 4{x^3} + x - \dfrac{1}{3}) - ( - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3})\\ = 6{x^4} - 4{x^3} + x - \dfrac{1}{3} + 3{x^4} + 2{x^3} + 5{x^2} - x - \dfrac{2}{3}\\ = (6{x^4} + 3{x^4}) + ( - 4{x^3} + 2{x^3}) + 5{x^2} + (x - x) + ( - \dfrac{1}{3} - \dfrac{2}{3})\\ = 9{x^4} - 2{x^3} + 5{x^2} - 1\end{array}\)
\(P\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(=4x^5+2x^3+x^2-x-x^4-3x^2+2x+5\)
\(=4x^5-x^4+2x^3-2x^2+x+5\)
Câu 1
a. Ta có:
A(x) = 5x3 - 3x2 - 2 + 5x - 7x4 + 2x
= -7x4 + 5x3 - 3x2 + 7x - 2
B(x) = -5x3 + 7x4 + 3x2 - 3x + 4
=7x4 - 5x3 + 3x2 - 3x + 4
b. Ta có
A(x) + B(x) = 4x + 2
A(x) - B(x) = -14x4 + 10x3 - 6x2 + 10x - 6
c. Ta có: C(x) = A(x) + B(x) = 4x + 2 = 0
⇔4x = -2 ⇔x = -1/2
d. Thay x = 1 vào biểu thức D(x) ta có
D(1)= -14 + 10 - 6 + 10 - 6 = -6
Câu 2
Vì đa thức P(m) = mx2 - 1 có nghiệm là 3 nên ta có
m.32 - 1 = 0 ⇒ 3m = 1 ⇒ m = 1/3
Chọn C
Ta có A + B = (2x3 + x2 - 4x + 2x3 + 5) + (6x + 3x3 - 2x + x2 - 5)
= 7x3 + 2x2 .