Trong không gian với hệ tọa độ Oxyz cho đường thẳng d : x - 1 2 = y + 1 2 = z + 2 1 và mặt phẳng (P): x + 2y + 2z – 7 = 0. Gọi I là giao điểm của d và (P). Tính khoảng cách từ điểm M thuộc d đến (P), biết IM = 9
A. 3 2
B. 2 5
C. 15
D. 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn A
Tìm giao điểm I từ hệ phương trình đường thẳng d và mặt phẳng (P). Viết phương trình đường thẳng IM. Gọi tọa độ điểm M theo tham số của đường thẳng IM rồi xác định tham số đó từ phương trình I M = 4 14
Phương trình \(d_1\) : \(\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}\) dạng tham số: \(\left\{{}\begin{matrix}x=1+t\\t=2-t\\z=3-t\end{matrix}\right.\)
Gọi A là giao điểm d1 và (P), tọa độ A thỏa mãn:
\(3-t-1=0\Rightarrow t=2\Rightarrow A\left(3;0;1\right)\)
\(\overrightarrow{n_P}=\left(0;0;1\right)\) ; \(\overrightarrow{n_Q}=\left(1;1;1\right)\)
\(\overrightarrow{u_{\Delta}}=\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(-1;1;0\right)\)
\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{n_P}\right]=\left(1;1;0\right)\)
Phương trình d: \(\left\{{}\begin{matrix}x=3+t\\y=t\\z=1\end{matrix}\right.\)
Chọn B
Vậy M(3;−4;−2) là giao điểm của đường thẳng d và mặt phẳng (P).
Đáp án C
HD: Gọi H(1+2t;-1+t;2-t) là hình chiếu của A trên d
Suy ra H(3;0;1), phương trình đường thẳng AH là
Đường thẳng d có VTCP Mặt phẳng (P) có VTPT
Suy ra sin của góc α tạo bởi d và (P) bằng
Khi đó
Chọn D.