K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2019

Đáp án B

PT 

Đặt 

Để (1) có nghiệm thì (2) có nghiệm  có nghiệm 

Suy ra  có nghiệm 

Xét hàm số

Lập bảng biến thiên hàm số

 

2 tháng 1 2018

9 tháng 12 2018

Đáp án B

PT

 

Đặt 

Để (1) có nghiệm thì (2) có nghiệm  có nghiệm

Suy ra có nghiệm 

Xét hàm số 

Lập bảng biến thiên hàm số 

6 tháng 12 2017

Chọn D

Bảng biến thiên 

Dựa vào bảng biến thiên suy ra phương trình có nghiệm khi

20 tháng 8 2018

Đáp án là B

Phương trình tương đương với

Xét hàm  Ta có  đồng biến

Mà  suy ra

Đặt u = cosx, 

Khi đó phương trình trở thành 

Xét 

Bảng biến thiên

Dựa vào bảng biến thiên suy ra phương trình có nghiệm khi

31 tháng 10 2019

Đặt  t = sin x + cos x   − 2 ≤ t ≤ 2 ⇒ sin x cos x = t 2 − 1 2 .

Phương trình trở thành t 2 − 1 2 − t + m = 0 ⇔ − 2 m = t 2 − 2 t − 1 ⇔ t − 1 2 = − 2 m + 2 .

Do − 2 ≤ t ≤ 2 ⇒ − 2 − 1 ≤ t − 1 ≤ 2 − 1 ⇔ 0 ≤ t − 1 2 ≤ 3 + 2 2 .

Vậy để phương trình có nghiệm 

⇔ 0 ≤ − 2 m + 2 ≤ 3 + 2 2 ⇔ − 1 + 2 2 2 ≤ m ≤ 1 → m ∈ ℤ m ∈ − 1 ; 0 ; 1 .                             

Chọn đáp án C.

23 tháng 5 2018

Đáp án C

Phương trình có nghiệm ⇔ 4 3 2 + 1 2 ≥ 1 - 2 m 2 ⇔ 4 m 2 - 4 m - 48 ≤ 0 ⇔ - 3 ≤ m ≤ 4 .

Suy ra có 4 giá trị nguyên dương của tham số m thỏa mãn đề bài

18 tháng 5 2019

Chọn đáp án C

 Bảng biến thiên:

Từ bảng biến thiên ta có phương trình (1) đã cho có nghiệm 

Vậy có 9 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

27 tháng 8 2021

1, Phương trình tương đương

\(\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x=1\)

⇔ \(sin\left(2x-\dfrac{\pi}{6}\right)=1\)

⇔ \(2x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k.2\pi\)

⇔ x = \(\dfrac{\pi}{3}+k.\pi\)

2, \(2cos3x+3sin3x-2\)

\(\sqrt{13}\)\((\dfrac{2}{\sqrt{13}}cos3x+\dfrac{3}{\sqrt{13}}sin3x)\) - 2

Do \(\left(\dfrac{2}{\sqrt{13}}\right)^2+\left(\dfrac{3}{\sqrt{13}}\right)^2=1\) nên tồn tại 1 góc a sao cho \(\left\{{}\begin{matrix}sina=\dfrac{2}{\sqrt{13}}\\cosa=\dfrac{2}{\sqrt{13}}\end{matrix}\right.\)

BT = \(\sqrt{13}sin\left(x+a\right)-2\)

Do - 1 ≤ sin (x + a) ≤ 1 với mọi x và a

⇒ \(-\sqrt{13}-2\le BT\le\sqrt{13}-2\)

⇒ \(-5,6< BT< 1,6\)

Vậy BT nhận 5 giá trị nguyên trong tập hợp S = {-5 ; -4 ; -3 ; -2 ; -1}

3. \(msinx-cosx=\sqrt{5}\)

⇔ \(\dfrac{m}{\sqrt{m^2+1}}.sinx-\dfrac{1}{\sqrt{m^2+1}}.cosx=\dfrac{\sqrt{5}}{\sqrt{m^2+1}}\)

⇔ sin(x - a) = \(\sqrt{\dfrac{5}{m^2+1}}\) với \(\left\{{}\begin{matrix}sina=\dfrac{1}{\sqrt{m^2+1}}\\cosa=\dfrac{m}{\sqrt{m^2+1}}\end{matrix}\right.\)

Điều kiện có nghiệm : \(\left|\sqrt{\dfrac{5}{m^2+1}}\right|\le1\)

⇔ m2 + 1 ≥ 5 

⇔ m2 - 4 ≥ 0

⇔ \(\left[{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)

20 tháng 10 2018