Phép chia 12 8 : 12 5 được kết quả dưới dạng lũy thừa gọn nhất là?
A. 12 13
B. 12 3
C. 12 2
D. 12 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(12^2.3.12^3.4=\left(4.3\right)^2.3.4=4^2.3^2.3.4=3^3.4^3=27.64=1728\)
\(12^2.3.12^3.4=12^5.3.4=\left(3.4\right)^5.3.4=3^5.4^5.3.4=3^6.4^6=729.4096=\text{2985984}\)
bài 11
\(6.6.6.6=6^4\) '\(b.5.15.15.15.3=15.15.15.15=15^4\)
\(c.81.3.3.3=3^4.3^3=3^7\)
bài 12.
\(a.765.5=153.5^2\)
\(b.837.7.7=93.21^2\)
\(c.568.8.2.4=71.8.2^6=71.2^9\)
a. \(12^2.3^2.2^3=2^4.3^2.3^2.2^3=2^7.3^4\)
b. \(8^3.3^2.6^3=2^9.3^2.2^3.3^3=2^{12}.3^5\)
c. \(5^{32}.5^2=5^{34}\)
d. \(100^6.2^3=\left(2^2.5^2\right)^6.2^3=2^8.5^8.2^3=2^{11}.5^8\)
e. \(100^2:10^2:5^2=\left(10.5.2\right)^2:10^2:5^2=2^2\)
f. \(121^3-11^2=11^6-11^2=11^2\left(11^4-1\right)\)
1
a) 2x + 3 (đã rút gọn)
b) 5(6 - x^4) = 30 - 5x^4
c) 12(4x + 4)12 = 48x + 48
d) 7x . 8x - 9x - 9 = 56x^2 - 9x - 9
e) 8 - x^3 (đã rút gọn)
f) 6x + 8x . 1 = 6x + 8x = 14x
g) 9 . 10x - 8 + 7 = 90x - 8 + 7 = 90x - 1
h) 7x + 9 + 8x - 1 = 15x + 8
2
a) 2^10 : 8^2 = (2^10) / (8^2) = (2^10) / (2^6) = 2^(10-6) = 2^4 = 16
b) 125 : 5^2 = 125 / (5^2) = 125 / 25 = 5
c) 64^2 : 2^3 . 8^7 = (64^2) / (2^3 . 8^7) = (2^6)^2 / (2^3 . (2^3)^7) = 2^12 / (2^3 . 2^21) = 2^(12 - 3 - 21) = 2^(-12)
d) 3^4 : 9 = 81 / 9 = 9
e) 8^2 . 4^2 = (8^2) . (4^2) = 64 . 16 = 1024 f) 5^2 . 10^2 : 5^2 = (5^2) . (10^2) / (5^2) = 100 / 1 = 100
3
A) Để tìm ƯC(12; 136) có thể chuyển sang lũy thừa, ta phân tích 12 và 136 thành các thừa số nguyên tố: 12 = 2^2 * 3 136 = 2^3 * 17 ƯC(12; 136) = 2^2 = 4
B) Để tìm ƯC(25; 300) với điều kiện ƯC chia hết cho 3 và 9, ta phân tích 25 và 300 thành các thừa số nguyên tố: 25 = 5^2 300 = 2^2 * 3 * 5^2 ƯC(25; 300) = 5^2 = 25 (vì 25 chia hết cho 3 và 9)
C) Để tìm BC(17; 221) với điều kiện là số lẻ và là hợp số, ta phân tích 17 và 221 thành các thừa số nguyên tố: 17 = 17^1 221 = 13 * 17 BC(17; 221) = 17 (vì 17 là số lẻ và là hợp số)
D) Để tìm BC(10; 15) với điều kiện ƯC < 150 và là số nguyên tố, ta phân tích 10 và 15 thành các thừa số nguyên tố: 10 = 2 * 5 15 = 3 * 5 BC(10; 15) = 5 (vì 5 là số nguyên tố và ƯC < 150)
4
a) Để tính S, ta có thể nhận thấy rằng các số mũ của 4 tăng dần từ 2 đến 99. Vậy ta có thể viết lại S như sau: S = 1 * 4^2 * 4^3 * 4^4 * ... * 4^98 * 4^99 = 4^(2 + 3 + 4 + ... + 98 + 99) = 4^(2 + 3 + 4 + ... + 99 + 100 - 1) = 4^(1 + 2 + 3 + ... + 100 - 1) = 4^(100 * 101 / 2 - 1) = 4^(5050 - 1) = 4^5049
b) Để chứng minh rằng S chia hết cho 1024, ta cần chứng minh rằng S chia hết cho 2^10 = 1024. Ta có: S = 4^5049 = (2^2)^5049 = 2^(2 * 5049) = 2^10098 Ta thấy rằng 10098 chia hết cho 10 (vì 10098 = 1009 * 10), nên ta có thể viết lại S như sau: S = 2^(2 * 5049) = 2^(2 * 1009 * 10) = (2^10)^1009 = 1024^1009 Vậy S chia hết cho 1024.
5
a) Để xác định thời điểm người đi ô tô bắt kịp bác An, ta cần tính thời gian mà cả hai đã đi. Thời gian mà bác An đã đi: t1 = quãng đường / vận tốc = 60 km / 40 km/h = 1.5 giờ Thời gian mà người đi ô tô đã đi: t2 = quãng đường / vận tốc = 60 km / 80 km/h = 0.75 giờ Vì người đi ô tô đã xuất phát sau bác An, nên thời gian mà người đi ô tô bắt kịp bác An sẽ là thời gian mà cả hai đã đi cộng thêm thời gian nghỉ của bác An: t = t1 + t2 + 15 phút = 1.5 giờ + 0.75 giờ + 15 phút = 2.25 giờ + 0.25 giờ = 2.5 giờ Vậy, người đi ô tô sẽ bắt kịp bác An sau 2.5 giờ.
b) Để tính quãng đường từ A đến B, ta chỉ cần tính tổng quãng đường mà cả hai đã đi: quãng đường từ A đến B = quãng đường của bác An + quãng đường của người đi ô tô = 60 km + 60 km = 120 km Vậy, quãng đường từ A đến B là 120 km.
b1
a.7^3
b.7^3*5^3
c.2^5*3^3*4^2
dx^3 *y^3
mình nha mình làm b1 thui
a) 7.7.7 = 73
b) 7.35.7.25 = 53 x 73
c) 2.3.8.12.24 = 29 x 33
d) x.x.y.y.x.y.x = x4 . y3
Bài 2:Viết kết quả dưới dạng lũy thừa.
a) 35 : 37 = 3-2
b) 125 : 53 = 11
c) 75 : 343 = 72
d) a12 : a8 = a4
Đáp án là B
Ta có: 12 8 : 12 5 = 12 8 - 5 = 12 3