Giúp mình bài này với
Cho hình bình hành ABCD, AC cắt BD tại O, 2 đường cao AM và DQ của tam
giác AOD cắt nhau tại E, 2 đường cao BN và CP của tam giác BOC cắt nhau tại F
a) Chứng minh AMCP, MNPQ là hình bình hành.
b) Chứng minh O là trung điểm của EF.
Xin cảm ơn ạ
a: Xét ΔAMO vuông tại M và ΔCPO vuông tại P có
OA=OC
\(\widehat{AOM}=\widehat{COP}\)
Do đó: ΔAMO=ΔCPO
Suy ra: OM=OP
hay O là trung điểm của PM
Xét ΔDQO vuông tại Q và ΔBNO vuông tại N có
OD=OB
\(\widehat{DOQ}=\widehat{BON}\)
Do đó: ΔDQO=ΔBNO
Suy a: OQ=ON
hay O là trung điểm của QN
Xét tứ giác AMCP có
O là trung điểm của AC
O là trung điểm của MP
Do đó: AMCP là hình bình hành
Xét tứ giác MNPQ có
O là trung điểm của MP
O là trung điểm của NQ
Do đó: MNPQ là hình bình hành