K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2019

AH // BK (cùng ⊥ b) và AB // HK ⇒ tứ giác ABKH là hình bình hành

⇒ AH = BK = h

a: Xét ΔABC có AC>AB

mà HC,HB lần lượt là hình chiếu của AC,AB trên BC

nên HC>HB

b: Xét ΔDBC có HB<HC

mà HB,HC lần lượt là hình chiếu của DB,DC trên BC

nên DB<DC

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Ta có:

\(\left. \begin{array}{l}AH \bot \left( P \right)\\BK \bot \left( P \right)\end{array} \right\} \Rightarrow AH\parallel BK\)

Mà \(AB\parallel HK\)

\( \Rightarrow ABKH\) là hình bình hành có \(AH \bot \left( P \right) \Rightarrow AH \bot HK \Rightarrow \widehat {AHK} = {90^ \circ }\)

Vậy \(ABKH\) là hình chữ nhật.

Vậy \(AH = BK\).

b) Ta có:

\(\left. \begin{array}{l}AH \bot \left( Q \right)\\BK \bot \left( Q \right)\end{array} \right\} \Rightarrow AH\parallel BK\)

Mà \(AB\parallel HK\)

\( \Rightarrow ABKH\) là hình bình hành có \(AH \bot \left( Q \right) \Rightarrow AH \bot HK \Rightarrow \widehat {AHK} = {90^ \circ }\)

Vậy \(ABKH\) là hình chữ nhật.

Vậy \(AH = BK\).

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

\(\left. \begin{array}{l}\Delta  \bot \left( P \right)\\a \subset \left( P \right)\end{array} \right\} \Rightarrow \Delta  \bot a,a//b \Rightarrow \Delta  \bot b \Rightarrow \left( {\Delta ,b} \right) = {90^0}\)

\(\Delta  \bot a \Rightarrow \left( {\Delta ,a} \right) = {90^0}\)

\( \Rightarrow \) (\(\Delta \), b) = (\(\Delta \), a) mà b là đường thẳng bất kì thuộc (Q)

\( \Rightarrow \) \(\Delta  \bot \left( Q \right)\)

20 tháng 2 2022

a. xét tam giác vuông AHB và tam giác vuông AHC, có:

AB = AC ( ABC cân )

góc B = góc C ( ABC cân )

Vậy tam giác vuông AHB = tam giác vuông AHC ( ch.gn )

b. ta có: trong tam giác cân ABC đường cao cũng là đường trung tuyến

=> BH = BC :2 = 10 : 2 =5 cm

Áp dụng định lý pitago vào tam giác vuông ABH

\(AB^2=AH^2+BH^2\)

\(\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{13^2-5^2}=\sqrt{144}=12cm\)

20 tháng 2 2022

giải hộ mik câu c vs d đuy 

a) Xét ΔABC có 

BE là đường cao ứng với cạnh AC(gt)

CF là đường cao ứng với cạnh AB(gt)

BE cắt CF tại H(gt)

Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)

Suy ra: AH⊥BC

b) Xét tứ giác BHCK có 

HC//BK(gt)

BH//CK(gt)

Do đó: BHCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Suy ra: Hai đường chéo HK và BC cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà M là trung điểm của BC(gt)

nên M là trung điểm của HK

hay H,M,K thẳng hàng(đpcm)