Chứng minh:
\(A=\frac{3-\sqrt{3+\sqrt{3+...+\sqrt{3}}}\left(2016\text{ dấu căn}\right)}{6-\sqrt{3+\sqrt{3+...+\sqrt{3}}}\left(2015\text{ dấu căn }\right)}<\frac{1}{4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{200}+5\sqrt{150}-7\sqrt{600}\right):\sqrt{50}=2+5\sqrt{3}-7\sqrt{12}\)
\(2+5\sqrt{3}-14\sqrt{3}=2-9\sqrt{3}\)
3) Gợi ý: Thay 1=xy+yz+xz
\(x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}=x\sqrt{\dfrac{\left(y^2+xy+yz+xz\right)\left(z^2+xy+yz+xz\right)}{x^2+xy+yz+xz}}=x\sqrt{\dfrac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+z\right)\left(x+y\right)}}=x\sqrt{\left(y+z\right)^2}=x\left(y+z\right)\)
Tương tự rồi cộng vào
mik làm bài này
linh tinh
bn ơi
cho mik
xin 1 L-I-K-E
b,
d,
\(\sqrt{\frac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\frac{4}{\left(2+\sqrt{5}\right)^2}}\)
\(=\frac{2}{\sqrt{5}-2}-\frac{2}{2+\sqrt{5}}\)
\(=\frac{2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)}{5-4}\)
\(=2\sqrt{5}+4-2\sqrt{5}+4\)
\(=8\)
Đặt \(a=\sqrt{3+\sqrt{3+...+\sqrt{3}}}\)(có 2010 dấu căn), suy ra :
\(a^2=3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}\)(có 2009 dấu căn), nên
\(a^2-3=\sqrt{3+\sqrt{3+...+\sqrt{3}}}\)(có 2009 dấu căn), do đó ta có :
\(\frac{3-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}{6-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=\frac{3-a}{6-\left(a^2-3\right)}=\frac{3-a}{9-a^2}=\frac{3-a}{\left(3-a\right)\left(3+a\right)}=\frac{1}{3+a}\).
Do \(a+3>4\) nên \(\frac{1}{3+a}<\frac{1}{4}\) hay \(\frac{3-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}{6-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}<\frac{1}{4}\) (đpcm).
a) Ta có: \(\sqrt{96}\cdot\sqrt{125}\)
\(=\sqrt{16}\cdot\sqrt{6}\cdot\sqrt{25}\cdot\sqrt{5}\)
\(=20\cdot\sqrt{30}\)
b) Ta có: \(\sqrt{a^4\cdot6^5}\)
\(=a^2\cdot36\cdot\sqrt{6}\)
c) Ta có: \(\sqrt{a^6\cdot b^{11}}\)
\(=\sqrt{a^6}\cdot\sqrt{b^{11}}\)
\(=\left|a^3\right|\cdot\left|b^5\right|\cdot\sqrt{b}\)
\(=a^3b^5\cdot\sqrt{b}\)
d) Ta có: \(\sqrt{a^3\left(1-a\right)^4}\)
\(=\sqrt{a^3}\cdot\sqrt{\left(1-a\right)^4}\)
\(=a\sqrt{a}\cdot\left(1-a\right)^2\)
Đặt cái căn dưới mẫu là a, suy ra căn trên tử là \(\sqrt{3+a}\). Nếu đề chính xác thì biến đổi tương đương nhẹ nhàng là ra :))
nếu là toán lớp 9 thì bạn vào hoc24.vn để đăng câu hỏi nha bạn
Ai đồng ý thì cho ít **** !!!
Toán lớp 9 phải vào Học.24h.
Quản lý bảo thế!!!