\(\frac{3-\sqrt{3+\sqrt{3+\sqrt{3+...\sqrt{3}}}}}{6-\sqrt{3+\sqrt{3+\sqrt{3+......">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2015

Đặt cái căn dưới mẫu là a, suy ra căn trên tử là \(\sqrt{3+a}\). Nếu đề chính xác thì biến đổi tương đương nhẹ nhàng là ra :))

9 tháng 7 2015

vui long giai chi tiet
minh hong hiu

25 tháng 12 2015

Đặt \(a=\sqrt{3+\sqrt{3+...+\sqrt{3}}}\)(có 2010 dấu căn), suy ra :

\(a^2=3+\sqrt{3+\sqrt{3+...+\sqrt{3}}}\)(có 2009 dấu căn), nên

\(a^2-3=\sqrt{3+\sqrt{3+...+\sqrt{3}}}\)(có 2009 dấu căn), do đó ta có :

\(\frac{3-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}{6-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}=\frac{3-a}{6-\left(a^2-3\right)}=\frac{3-a}{9-a^2}=\frac{3-a}{\left(3-a\right)\left(3+a\right)}=\frac{1}{3+a}\).

Do  \(a+3>4\) nên  \(\frac{1}{3+a}<\frac{1}{4}\) hay \(\frac{3-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}{6-\sqrt{3+\sqrt{3+...+\sqrt{3}}}}<\frac{1}{4}\) (đpcm).

12 tháng 8 2016

\(\left(\sqrt{200}+5\sqrt{150}-7\sqrt{600}\right):\sqrt{50}=2+5\sqrt{3}-7\sqrt{12}\)

\(2+5\sqrt{3}-14\sqrt{3}=2-9\sqrt{3}\)

23 tháng 12 2015

bạn ghi đề sai phải ko? Phải là căn trong căn chứ. sao lại có \(\sqrt{3}+\sqrt{3}+\sqrt{3}...\) hay là \(\sqrt{3+\sqrt{3+\sqrt{.....+\sqrt{3}}}}\)

20 tháng 5 2021

\(\text{Đặt: }\sqrt{6+\sqrt{6+\sqrt{6+....}}}=a\Rightarrow a^2=6+a\Leftrightarrow a^2-a-6=\left(a-3\right)\left(a+2\right)=0\)

thấy ngay a không thể đạt giá trị âm nên 

a=3 thay vào P=0 (vô lí) -> đề sai.