K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2018

17 tháng 6 2017

22 tháng 8 2021

\(A=x^2+y^2+z^2-yz-4x-3y+2027\)

\(\Rightarrow4A=4x^2+4y^2+4z^2-4yz-16x-12y+8108=4x^2-16x+16+3y^2+12y+12+y^2-4yz+4z^2+8080=4\left(x-2\right)^2+3\left(y+2\right)^2+\left(y-2z\right)^2+8080\)

Vì \(4\left(x-2\right)^2\ge0\)

    \(3\left(y+2\right)^2\ge0\)

     \(\left(y-2z\right)^2\ge0\)

\(\Rightarrow4A\ge8080\Rightarrow A\ge2020\)

\(ĐTXR\Leftrightarrow x=2,y=-2,z=-1\)

27 tháng 12 2021

Bài 1: 

\(A=x^2+6x+9+x^2-10x+25\)

\(=2x^2+4x+34\)

\(=2\left(x^2+2x+17\right)\)

\(=2\left(x+1\right)^2+32>=32\forall x\)

Dấu '=' xảy ra khi x=-1

27 tháng 12 2021

giải cho mình bài 2 lun đc ko

 

18 tháng 4 2019

Đặt A=\(\left|2x-3y\right|+\left|4z-3x\right|+\left|xy+yz+xz-2484\right|\)

Ta có \(\left|2x-3y\right|\ge0;\left|4z-3x\right|\ge0;\left|xy+yz+xy-2484\right|\ge0\)

\(\Rightarrow A\ge0\Rightarrow Amin=0\)

\(\Leftrightarrow\hept{\begin{cases}2x-3y=0\\4z-3x=0\\xy+yz+xz-2484=0\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{12}=\frac{y}{8}\left(1\right)\\\frac{x}{4}=\frac{z}{3}\Rightarrow\frac{x}{12}=\frac{z}{9}\left(2\right)\\xy+yz+xz=2484\left(3\right)\end{cases}}}\)

Từ (1)(2)\(\Rightarrow\frac{x}{12}=\frac{y}{8}=\frac{z}{9}=k\left(k\ne0\right)\)

\(\Rightarrow x=12k;y=8k;z=9k\)

Thay vào 3 ta có \(12.8.k^2+8.9.k^2+12.9.k^2=2484\)

\(\Rightarrow k^2\left(12.8+8.9+12.9\right)=2484\)

\(\Rightarrow k^2.276=2484\)

\(\Rightarrow k^2=9=\left(\pm3\right)^2\)

\(\Rightarrow k=\pm3\)

+Nếu k =3 thì      x=36          ;                  y=24                        ;                      z=27

+Nếu k = -3thì    x=-36          ;                   y=-24                      ;                        z=-27

Vậy \(Amin=0\Leftrightarrow\left(x;y;z\right)\in\left\{\left(36;24;27\right);\left(-36;-24;-27\right)\right\}\)

15 tháng 3 2018

Ta có:  2 x 2 + 1 2 ≥ 2 x ;  2 y 2 + 1 2 ≥ 2 y và  x 2 + y 2 ≥ 2 x y

Cộng vế với vế các BĐT trên ta được:

3 x 2 + y 2 + 1 ≥ 2 x + y + x y = 5 2

=> A =  x 2 + y 2 ≥ 1 2

Từ đó tìm được  A m i n = 1 2 <=> x = y =  1 2

24 tháng 5 2021

\(x^2+y^2+xy=3\)

Có \(x^2+y^2\ge2xy\) \(\Rightarrow3=x^2+y^2+xy\ge2xy+xy\) \(\Leftrightarrow xy\le1\)

\(x^2+y^2\ge-2xy\) \(\Rightarrow3=x^2+y^2+xy\ge-2xy+xy\) \(\Leftrightarrow-3\le xy\) 

Đặt A= \(x^2+y^2-xy=\left(3-xy\right)-xy=3-2xy\)

mà \(-3\le xy\le1\) \(\Rightarrow9\ge3-2xy\ge1\)

=> minA=1 <=> \(\left\{{}\begin{matrix}xy=1\\x=y\end{matrix}\right.\) <=>x=y=1

maxA=9 <=>\(\left\{{}\begin{matrix}xy=-3\\x=-y\end{matrix}\right.\) <=>\(\left(x;y\right)=\left(\sqrt{3};-\sqrt{3}\right);\left(-\sqrt{3};\sqrt{3}\right)\)

NV
24 tháng 5 2021

Đặt \(P=x^2+y^2-xy\)

\(\Rightarrow\dfrac{P}{3}=\dfrac{x^2+y^2-xy}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}\)

\(\dfrac{P}{3}=\dfrac{3x^2+3y^2-3xy}{3\left(x^2+y^2+xy\right)}=\dfrac{x^2+y^2+xy+2\left(x^2+y^2-2xy\right)}{3\left(x^2+y^2+xy\right)}\)

\(\dfrac{P}{3}=\dfrac{1}{3}+\dfrac{2\left(x-y\right)^2}{3\left(x^2+y^2+xy\right)}\ge\dfrac{1}{3}\Rightarrow P\ge1\)

\(P_{min}=1\) khi \(x=y=1\)

\(\dfrac{P}{3}=\dfrac{x^2+y^2-xy}{x^2+y^2+xy}=\dfrac{3\left(x^2+y^2+xy\right)-2\left(x^2+y^2+2xy\right)}{x^2+y^2+xy}=3-\dfrac{2\left(x+y\right)^2}{x^2+y^2+xy}\le3\)

\(\Rightarrow P\le9\)

\(P_{max}=9\) khi \(\left(x;y\right)=\left(\sqrt{3};-\sqrt{3}\right);\left(-\sqrt{3};\sqrt{3}\right)\)

23 tháng 10 2021

\(a,=3\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=3\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\ge\dfrac{1}{4}\)

Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)

\(b,=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

\(c,=\left(x^2-2xy+y^2\right)+x^2+1=\left(x-y\right)^2+x^2+1\ge1\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=y\\x=0\end{matrix}\right.\Leftrightarrow x=y=0\)