Đồ thị của hàm số y = 3x4 – 4x3 – 6x2 + 12x + 1 đạt cực tiểu tại M(x1; y1). Tính tổng x1 + y1
A. 5.
B. -11
C. 7
D. 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chọn C.
y = 3x4 – 4x3 – 6x2 + 12x + 1 => y’ = 12x3 – 12x2 – 12x + 12
y’ = 0 ó 12x3 – 12x2 – 12x + 12 = 0
bảng biến thiên
Vậy hàm số y = 3x4 – 4x3 – 6x2 + 12x + 1 đạt cực tiểu tại M(-1;-10). Khi đó x1 + y1 = -11
Đáp án B
Ta có y ' = 12 x 3 - 12 x 2 - 12 x + 12 = 0 ⇔ x = ± 1
Lại có y ' ' = 36 x 2 - 24 x - 12 ⇒ y " 1 = 0 y " - 1 > 0
⇒ Hàm số đạt cực tiểu tại x = - 1 ⇒ x 1 = - 1 ⇒ y 1 = - 10 ⇒ x 1 + y 1 = - 11
Đáp án C.
TXĐ: D = R.
Ta có y’ = 6x2 + 6x - 12, y’ = 0 ó 6x2 + 6x – 12 = 0 ó x = 1 hoặc x = -2.
y’’ = 12x + 12, y’’(1) = 24 > 0 => x2 = 1 là điểm cực tiểu, y’’(-2) = -12 < 0 => x1 - 2 là điểm cực đại.
Vậy ta có x2 – x1 = 3.
Đáp án B.
Ta có: y’ = 12x3 – 12x2 – 12x + 12.
Bảng biến thiên
=> M(-1;-10) => x1 + y1 = -11