K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2021

A=(x^2-2.x.1+1^2)+8

A=(X-1)^2+8

Vì (x-1)^2 >hoặc =0

--> (x-1)^2+8>hoặc =0+8

-->A>hoặc =8

Dấu "=" xảy ra khi:

x-1=0

--> x=1

vậy để A có GTNN=8 thì x=1

1 tháng 11 2021

\(A=x^2-2x+9\)

\(=x^2-2x+1+8\)

\(=\left(x^2-2x+1\right)+8\)

\(=\left(x^2-2x.1+1^2\right)+8\)

\(=\left(x-1\right)^2+8\)

Mà: \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+8\ge8\forall x\)

Vậy giá trị nhỏ nhất của \(A=8\) khi \(x-1=0\Rightarrow x=1\)

NV
6 tháng 2 2020

\(A=\frac{x^2+2x+5+x^2-4x+4}{x^2+2x+5}=1+\frac{x^2-4x+4}{x^2+2x+5}=1+\frac{\left(x-2\right)^2}{\left(x+1\right)^2+4}\ge1\)

Dấu "=" xảy ra khi \(x=2\)

6 tháng 11 2015

\(A=\frac{\frac{1}{2}\left(2x^2+4x+9\right)-\frac{11}{2}}{2x^2+4x+9}=\frac{1}{2}-\frac{11}{2}.\frac{1}{2x^2+4x+9}\)

Nhận xét: 2x+ 4x + 9 = 2.(x+ 2x + 1) + 7 = 2.(x + 1)+ 7 > 7 với mọi x

=> \(\frac{1}{2x^2+4x+9}\le\frac{1}{7}\)=> \(-\frac{11}{2}.\frac{1}{2x^2+4x+9}\ge\frac{-11}{2}.\frac{1}{7}=-\frac{11}{14}\)

=> A > \(\frac{1}{2}-\frac{11}{14}=-\frac{2}{7}\) 

Vậy A nhỏ nhất bằng -2/7 khi  x+ 1 = 0  => x = -1

6 tháng 11 2015

bạn đưa ra là

x2+2x-1=2x2+4x+9

rồi chuyển vế là xong

​mình cũng không bik có đúng không

​mik mới học lớp 7 thôi

 

28 tháng 5 2017

A=\(\sqrt{x^2-2x+1}+\sqrt{x^2+6x+9}=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+3\right)^2}\)=|x-1|+|x+3|=|1-x|+|x+3|

Áp dụng bđt |a|+|b|\(\ge\)|a+b| ta được: A=|1-x|+|x+3|\(\ge\)|1-x+x+3|=4

Dấu "=" xảy ra khi (1-x)(x+3)\(\ge\)0 <=> \(-3\le x\le1\)

Vậy Amin=4 khi \(-3\le x\le1\)

28 tháng 5 2017

A = \(\sqrt{x^2-2x+1}+\sqrt{x^2+6x+9}\)

  = \(\sqrt{\left(1-x\right)^2}+\sqrt{\left(x+3\right)^2}\)

 = 1 - x + x + 3

  = 4 

NV
30 tháng 12 2021

a.

\(A=\left(x^4+y^2+1-2x^2y+2x^2-2y\right)+2\left(y^2-2y+1\right)+2026\)

\(A=\left(x^2-y+1\right)^2+2\left(y-1\right)^2+2026\ge2026\)

\(A_{min}=2026\) khi \(\left(x;y\right)=\left(0;1\right)\)

b.

Đặt \(x-1=t\Rightarrow x=t+1\)

\(\Rightarrow A=\dfrac{3\left(t+1\right)^2-8\left(t+1\right)+6}{t^2}=\dfrac{3t^2-2t+1}{t^2}=\dfrac{1}{t^2}-\dfrac{2}{t}+3=\left(\dfrac{1}{t}-1\right)^2+2\ge2\)

\(A_{min}=2\) khi \(t=1\Rightarrow x=2\)

30 tháng 12 2021

\(A=\dfrac{3x^2-8x+6}{x^2-2x+1}=\dfrac{3x^2-8x+6}{\left(x-1\right)^2}=\dfrac{2\left(x-1\right)^2+\left(x-2\right)^2}{\left(x-1\right)^2}=2+\dfrac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge2\)

Dấu \("="\Leftrightarrow x=2\)

10 tháng 9 2015

Bài 1

(2x + 9)2 > 0

3(2x + 9)2 > 0

3(2x + 9)2 - 1 > - 1

Vậy GTNN của biểu thức là - 1

Bài 2

(x - a)(x + a) = x2 - 169

x2 - a2 = x2 - 169

a2 = 169

mà a < 0

nên a = - 13

AH
Akai Haruma
Giáo viên
27 tháng 2 2023

Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn. Viết thế này khó đọc quá trời.

NV
28 tháng 3 2019

Hy vọng bạn học BĐT Cauchy rồi

\(x\ne-1\)

Đặt \(\left(x+1\right)^2=a>0\Rightarrow P=\frac{\left(a+2\right)\left(a+8\right)}{a}=\frac{a^2+10a+16}{a}\)

\(P=a+\frac{16}{a}+10\ge2\sqrt{a.\frac{16}{a}}+10=18\)

\(\Rightarrow P_{min}=18\) khi \(a=4\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)