. Tìm giá trị nhỏ nhất của biểu thức:
C=x^2-4xy+5y^2-2y+28
D=(x-2)(x-5)(x^2-7x-10)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-20x+101=\left(x-10\right)^2+1\ge1\)
\(minA=1\Leftrightarrow x=10\)
\(B=2x^2+40x-1=2\left(x+10\right)^2-201\ge-201\)
\(minB=-201\Leftrightarrow x=-10\)
\(C=x^2-4xy+5y^2-2y+28=\left(x^2-4xy+4y^2\right)+\left(y^2-2y+1\right)+27=\left(x-2y\right)^2+\left(y-1\right)^2+27\ge27\)
\(minC=27\Leftrightarrow\)\(\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)
\(D=\left(x-2\right)\left(x-5\right)\left(x^2-7x-10\right)=\left(x^2-7x+10\right)\left(x^2-7x+10\right)=\left(x^2-7x\right)^2-100\ge-100\)
\(minD=100\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)
a: Ta có: \(A=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=10
b: ta có: \(B=2x^2+40x-1\)
\(=2\left(x^2+20x-\dfrac{1}{2}\right)\)
\(=2\left(x^2+20x+100-\dfrac{201}{2}\right)\)
\(=2\left(x+10\right)^2-201\ge-201\forall x\)
Dấu '=' xảy ra khi x=-10
a)
\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
Daaus = xayr ra khi: x = 2
b) \(B=4x^2-12x+15=4\left(x^2-3x+9\right)-21=4\left(x-3\right)^2-21\ge-21\)
Dấu = xảy ra khi x = 3
c) \(C=4x^2+2y^2-4xy-4y+1=\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3=\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu = xảy ra khi
2x = y và y = 2
=> x = 1 và y = 2
a) A = \(-x^2+4x+3=-\left(x-2\right)^2+7\le7\)
Dấu "=" <=> x = 2
b) \(4x^2-12x+15=\left(2x-3\right)^2+6\ge6\)
Dấu "=" xảy ra <=> \(x=\dfrac{3}{2}\)
c) \(4x^2+2y^2-4xy-4y+1\)
= \(\left(4x^2-4xy+y^2\right)+\left(y^2-4y+4\right)-3\)
= \(\left(2x-y\right)^2+\left(y-2\right)^2-3\ge-3\)
Dấu "=" <=> \(\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
a: Ta có: \(A=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi x=10
đặt biểu thức là A. Ta có:
A=x2 - 4xy + 5y2 - 2y + 28
= (x2-4xy+4y2) + (y2-2y +1)+27
=(x-2y)2 + (y-1)2 + 27
vì (x-2y)2 ≥ 0; (y-1)2 ≥ 0 ⇔ A ≥ 27
⇔\(\left[\begin{array}{} (x-2y)^2=0\\ (y-1)^2 =0 \end{array} \right.\) ⇔\(\left[\begin{array}{} x=2\\ y=1\end{array} \right.\)
Vậy, Min A=27 khi x=2; y=1
B=[(x - 2)(x - 5)](x2– 7x - 10)
= (x2- 7x + 10)(x2 - 7x - 10)
= (x2 - 7x)2- 102
= (x2 - 7x)2 - 100
=>(x2-7x)2\(\ge\) 100
GTNN = -100 \(\Rightarrow\) x2 - 7x = 0 \(\Leftrightarrow\) x(x-7) = 0 \(\Leftrightarrow\) x = 0 hoặc x = 7
B = x2 - 4xy + 5y2 + 10x - 22y + 28
= x2 - 4xy + 4y2+ y2+ 10(x-2y) + 28
= (x - 2y)2+ 10(x-2y) + 25 + y2- 2y+ 1 + 2
= (x-2y + 5)2 + (y-1)2 + 2\(\ge\) 2
GTNN B = 2, khi y=1, x=-3
\(-x^2+4xy-5y^2-8y-18\)
\(=-\left(x^2-4xy+4y\right)-\left(y^2+8y+16\right)-2\)
\(=-\left(x+2y\right)^2-\left(y+4\right)^2-2\)
Vì \(-\left(x+2y\right)^2\le0;-\left(y+4\right)^2\le\forall x;y\)
\(\Rightarrow-\left(x+2y\right)^2-\left(y+4\right)^2-2< 0\forall x;y\)
\(\Rightarrow dpcm\)
a) \(-x^2+4xy-5y^2-8y-18=-\left(x^2-4xy+5y^2+8y+18\right)\)
\(=-\left[\left(x^2-4xy+4y^2\right)+\left(y^2+8y+16\right)+2\right]\)
\(=-\left[\left(x-2y\right)^2+\left(y+4\right)^2+2\right]\)
Vì \(\left(x-2y\right)^2\ge0\forall x,y\); \(\left(y+4\right)^2\ge0\forall y\); \(2>0\)
\(\Rightarrow\left(x-2y\right)^2+\left(y+4\right)^2+2>0\)
\(\Rightarrow-\left[\left(x-2y\right)^2+\left(y+4\right)^2+2\right]< 0\)
\(\Rightarrow-x^2+4xy-5y^2-8y-18\)luôn âm với mọi x ( đpcm )
Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3
= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1
= (x-3y)2 + (2x -1)2 + (y-1)2 +1
Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0
(2x -1)2 luôn lớn hơn hoặc bằng 0
(y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0
ta có:\(A=x^2+5y^2-4xy-2y+2x+2010\)
\(=x^2+4y^2+y^2-4xy-4y+2y+2x+1+1+2008\)
\(=\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1+\left(y^2+2x+1\right)+2008\)
\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y+1\right)^2+2008\)
\(=\left(x-2y+1\right)^2+\left(y+1\right)^2+2008\)
Vì: (x-2y+1)2+(y+1)>0 với \(\forall x;y\)
do đó: (x-2y+1)2+(y+1)+2008 > 2008 với \(\forall x;y\)
Dấu "=" xảy ra khi x-2y+1=0 và y+1=0
ta có:
y+1=0=>y=0-1=>y=-1
thay y=-1 và x-2y+1=0
=>x-2.(-1)+1=0
=>x+2+1=0
=>x+2=-1
=>x=-1-2
=>x=-3
vậy \(A_{min}=2008\) khi x=-3 hoặc x=-1
\(A=x^2+5y^2-4xy-2y+2x+2010\)
\(=\left[x^2-2x\left(2y-1\right)+\left(2y-1\right)^2\right]+\left(y^2+2y+1\right)+2008\)
\(=\left(x-2y+1\right)^2+\left(y+1\right)^2+2008\ge2008\)
\(minA=2008\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)
\(A=\left[\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1\right]+\left(y^2+2y+1\right)+2008\\ A=\left[\left(x-2y\right)^2+2\left(x-2y\right)+1\right]+\left(y+1\right)^2+2008\\ A=\left(x-2y+1\right)^2+\left(y+1\right)^2+2008\ge2008\\ A_{min}=2008\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-1\end{matrix}\right.\)
Toán lớp 0 ????? \(\text{ 🤔 }\text{ 🤔 }\text{ 🤔 }\text{ 😅 }\text{ 😅 }\text{ 😅 }\)
\(VT=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\\ =\left(x-y\right)^2\left(x+y\right)^2=VP\)
VT\(=\left(x^2+y^2-2xy\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x-y\right)^2\cdot\left(x+y\right)^2\)