Chứng minh rằng E=90+180+300+450 chia hết cho 15.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(B=16^5+2^{15}\)
\(=\left(2^4\right)^5+2^{15}\)
\(=2^{20}+2^{15}\)
\(=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)
c: \(45⋮9;99⋮9;180⋮9\)
Do đó: \(45+99+180⋮9\)
=>\(C⋮9\)
d: \(D=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+2^4\cdot\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\left(2+2^4+...+2^{58}\right)⋮7\)
\(D=2+2^2+2^3+...+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+\left(2^5+2^6+2^7+2^8\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{57}\right)\)
=>D chia hết cho cả 3 và 5
e) 84 = 22 . 3 . 7
180 = 22 . 5 . 32
ƯCLN(84,180) = 22 . 3 = 12
ƯC(84,180) = Ư(12) = 1,2,3,4,6,12
Mà theo đề bài x > 6 nên x = 12
f) Không hiểu đề bài :v
c) C = 5 + 52 + 53 +...+ 58
= ( 5 + 52 ) + ( 53 + 54 ) + ( 55 + 56 ) + ( 57 + 58 )
= 5 + 52 + 52( 5 + 52 ) + 54( 5 + 52 ) + 56( 5 + 52 )
= 5 + 52 ( 1 + 52 + 54 + 56 )
= 30. ( 1 + 52 + 54 + 56 ) chia hết cho 30
Vậy C = 5 + 52 + 53 +...+ 58 chia hết cho 30
b) B = 165 + 215
= (24)5 + 215
= 220 + 215
= 215. 25 + 215
= 215(25 + 1)
= 215.33 chia hết cho 33
Vậy B = 165 + 215 chia hết cho 33
a: a^3-a=a(a^2-1)
=a(a-1)(a+1)
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>a^3-a chia hết cho 6
a) Vì 84:x nên x E ƯC ( 84,180) và x > 6
180:x
84 = 22.31.71
180 = 22.32. 51
ƯCLN(84,180) = 22.31 = 12
Ư(12) = { 1;2;3;4;6;12 }
ƯC(84,180) = { 1;2;3;4;6;12 }
Vì x > 6 nên x = 12
b) Nó chỉ khác bởi vì nó là BC(12,15,18) những cách làm thì tương tự như vậy
vì 450 có tổng các chữ số là: 4+5+0=9 mà 9 chia hết cho 3 => 450 chia hết cho 3