K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2017

Ta có

P ( x ) = 2 x 3 − 3 x + x 5 − 4 x 3 + 4 x − x 5 + x 2 − 2 = x 5 − x 5 + 2 x 3 − 4 x 3 + x 2 + ( 4 x − 3 x ) − 2 = − 2 x 3 + x 2 + x − 2  Và  Q ( x ) = x 3 − 2 x 2 + 3 x + 1 + 2 x 2

= x 3 + - 2 x 2 + 2 x 2 + 3 x + 1 = x 3 + 3 x + 1

Khi đó

P ( x ) − Q ( x ) = − 2 x 3 + x 2 + x − 2 − x 3 + 3 x + 1 = − 2 x 3 + x 2 + x − 2 − x 3 − 3 x − 1 = − 2 x 3 − x 3 + x 2 + ( x − 3 x ) − 2 − 1 = − 3 x 3 + x 2 − 2 x − 3

Chọn đáp án B

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) \(M(x) = A(x) + B(x) \\= 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4} \\=(4x^4-4x^4)+(-7x^3+7x^3)+(6x^2-5x^2)+(-5x+5x)+(-6+4)\\= {x^2} - 2.\)

b) \(A(x) = B(x) + C(x) \Rightarrow C(x) = A(x) - B(x)\)

\(\begin{array}{l}C(x) = A(x) - B(x)\\ = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 - ( - 5{x^2} + 7{x^3} + 5x + 4 - 4{x^4})\\ = 4{x^4} + 6{x^2} - 7{x^3} - 5x - 6 + 5{x^2} - 7{x^3} - 5x - 4 + 4{x^4}\\ =(4x^4+4x^4)+(-7x^3-7x^3)+(6x^2+5x^2)+(-5x-5x)+(-6-4)\\= 8{x^4} - 14{x^3} + 11{x^2} - 10x - 10\end{array}\) 

B(3)=2*3^2-4*3+3=18-12+3=9

B(-1/2)=2*1/4-4*(-1/2)+3=1/2+3+2=1/2+5=11/2

26 tháng 4 2023

Cảm ơn nhe.^_^

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a)

\(\begin{array}{l}A(x) = {x^3} + \dfrac{3}{2}x - 7{x^4} + \dfrac{1}{2}x - 4{x^2} + 9\\ =  - 7{x^4} + {x^3} - 4{x^2} + \left( {\dfrac{3}{2}x + \dfrac{1}{2}x} \right) + 9\\ =  - 7{x^4} + {x^3} - 4{x^2} + 2x + 9\\B(x) = {x^5} - 3{x^2} + 8{x^4} - 5{x^2} - {x^5} + x - 7\\ = \left( {{x^5} - {x^5}} \right) + 8{x^4} + \left( { - 3{x^2} - 5{x^2}} \right) + x - 7\\ = 0 + 8{x^4} + ( - 8{x^2}) + x - 7\\ = 8{x^4} - 8{x^2} + x - 7\end{array}\)

b) * Đa thức A(x):

+ Bậc của đa thức là: 4

+ Hệ số cao nhất là: -7

+ Hệ số tự do là: 9

* Đa thức B(x):

+ Bậc của đa thức là: 4

+ Hệ số cao nhất là: 8

+ Hệ số tự do là: -7

a. \(x^4-5x^3+4x-5-x^4+3x^2+2x+1\)

\(=-5x^3+3x^2+6x-4\)

b. \(R\left(x\right)=x^4-5x^3+4x-5-\left(-x^4+3x^2+2x+1\right)\)

\(=x^4-5x^3+4x-5+x^4-3x^2-2x-1\)

\(=2x^4-5x^3-3x^2+2x-6\)

14 tháng 5 2023

a) �(�)+�(�)P(x)+Q(x) 

=(�4−5�3+4�−5)+(−�4+3�2+2�+1)=(x45x3+4x5)+(x4+3x2+2x+1)

=�4−5�3+4�−5−�4+3�2+2�+1=x45x3+4x5x4+3x2+2x+1

=(�4−�4)−5�3+3�2+(4�+2�)+(1−5)=(x4x4)5x3+3x2+(4x+2x)+(15)

=−5�3+3�2+6�−4=5x3+3x2+6x4

b) �(�)=�(�)−�(�)R(x)=P(x)Q(x)

=(�4−5�3+4�−5)−(−�4+3�2+2�+1)=(x45x3+4x5)(x4+3x2+2x+1)

=�4−5�3+4�−5+�4−3�2−2�−1=x45x3+4x5+x43x22x1

=(�4+�4)−5�3−3�2+(4�−2�)+(−1−5)=(x4+x4)5x33x2+(4x2x)+(15)

=2�4−5�3−3�2+2�−6=2x45x33x2+2x6

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a)

\(\begin{array}{l}P(x) = 5{x^3} + 2{x^4} - {x^2} + 3{x^2} - {x^3} - 2{x^4} - 4{x^3}\\ = \left( {2{x^4} - 2{x^4}} \right) + \left( {5{x^3} - {x^3} - 4{x^3}} \right) + \left( { - {x^2} + 3{x^2}} \right)\\ = 0 + 0 + 2{x^2}\\ = 2{x^2}\\Q(x) = 3x - 4{x^3} + 8{x^2} - 5x + 4{x^3} + 5\\ = \left( { - 4{x^3} + 4{x^3}} \right) + 8{x^2} + \left( {3x - 5x} \right) + 5\\ = 0 + 8{x^2} + ( - 2x) + 5\\ = 8{x^2} - 2x + 5\end{array}\)

b) P(1) = 2.12 = 2

P(0) = 2. 02 = 0

Q(-1) = 8.(-1)2 – 2.(-1) +5 = 8 +2 +5 =15

Q(0) = 8.02 – 2.0 + 5 = 5

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

\(\begin{array}{l}A + B = (6{x^4} - 4{x^3} + x - \dfrac{1}{3}) + ( - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3})\\ = 6{x^4} - 4{x^3} + x - \dfrac{1}{3} - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3}\\ = (6{x^4} - 3{x^4}) + ( - 4{x^3} - 2{x^3}) - 5{x^2} + (x + x) + ( - \dfrac{1}{3} + \dfrac{2}{3})\\ = 3{x^4} - 6{x^3} - 5{x^2} + 2x + \dfrac{1}{3}\\A - B = (6{x^4} - 4{x^3} + x - \dfrac{1}{3}) - ( - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3})\\ = 6{x^4} - 4{x^3} + x - \dfrac{1}{3} + 3{x^4} + 2{x^3} + 5{x^2} - x - \dfrac{2}{3}\\ = (6{x^4} + 3{x^4}) + ( - 4{x^3} + 2{x^3}) + 5{x^2} + (x - x) + ( - \dfrac{1}{3} - \dfrac{2}{3})\\ = 9{x^4} - 2{x^3} + 5{x^2} - 1\end{array}\)\(\begin{array}{l}A + B = (6{x^4} - 4{x^3} + x - \dfrac{1}{3}) + ( - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3})\\ = 6{x^4} - 4{x^3} + x - \dfrac{1}{3} - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3}\\ = (6{x^4} - 3{x^4}) + ( - 4{x^3} - 2{x^3}) - 5{x^2} + (x + x) + ( - \dfrac{1}{3} + \dfrac{2}{3})\\ = 3{x^4} - 6{x^3} - 5{x^2} + 2x + \dfrac{1}{3}\\A - B = (6{x^4} - 4{x^3} + x - \dfrac{1}{3}) - ( - 3{x^4} - 2{x^3} - 5{x^2} + x + \dfrac{2}{3})\\ = 6{x^4} - 4{x^3} + x - \dfrac{1}{3} + 3{x^4} + 2{x^3} + 5{x^2} - x - \dfrac{2}{3}\\ = (6{x^4} + 3{x^4}) + ( - 4{x^3} + 2{x^3}) + 5{x^2} + (x - x) + ( - \dfrac{1}{3} - \dfrac{2}{3})\\ = 9{x^4} - 2{x^3} + 5{x^2} - 1\end{array}\)

9 tháng 1 2024

Để thu gọn và sắp xếp các hạng tử của mỗi đa thức, ta cần thực hiện các bước sau:
Đối với đa thức P(x): P(x) = (4x + 1 - x^2 + 2x^3) - (x^4 + 3x - x^3 - 2x^2 - 5) = 4x + 1 - x^2 + 2x^3 - x^4 - 3x + x^3 + 2x^2 + 5 = -x^4 + 3x^3 + x^2 + x + 6
Đối với đa thức Q(x): Q(x) = 3x^4 + 2x^5 - 3x - 5x^4 - x^5 + x + 2x^5 - 1 = 2x^5 - x^5 + 3x^4 - 5x^4 + x - 3x - 1 = x^5 - 2x^4 - 2x - 1
Sau khi thu gọn và sắp xếp các hạng tử, ta có: P(x) = -x^4 + 3x^3 + x^2 + x + 6 Q(x) = x^5 - 2x^4 - 2x - 1

a: \(P\left(x\right)=\left(4x+1-x^2+2x^3\right)-\left(x^4+3x-x^3-2x^2-5\right)\)

\(=4x+1-x^2+2x^3-x^4-3x+x^3+2x^2+5\)

\(=-x^4+3x^3+x^2+x+6\)

\(Q\left(x\right)=3x^4+2x^5-3x-5x^4-x^5+x+2x^5-1\)

\(=\left(2x^5-x^5+2x^5\right)+\left(3x^4-5x^4\right)+\left(-3x+x\right)-1\)

\(=-x^5-2x^4-2x-1\)

b: Bạn ghi lại đề đi bạn

`7,`

`a,`

\(M(x) = - 5x ^ 4 + 3x ^ 5 + x(x ^ 2 + 5) + 14x ^ 4 - 6x ^ 5 - x ^ 3 + x - 1 \)

\(M(x)=-5x^4+3x^5+x^3+5x+14x^4-6x^5-x^3+x-1\)

`M(x)=(3x^5-6x^5)+(-5x^4+14x^4)+(x^3-x^3)+(5x+x)-1`

`M(x)=-3x^5+9x^4+6x-1`

 

\(N(x)=x ^ 4 (x - 5) - 3x ^ 3 + 3x + 2x ^ 5 - 4x ^ 4 + 3x ^ 3 - 5 \)

\(N(x)=x^5-5x^4-3x^3+3x+2x^5-4x^4+3x^3-5\)

`N(x)=(x^5+2x^5)+(-5x^4-4x^4)+(-3x^3+3x^3)+3x-5`

`N(x)=3x^5-9x^4+3x-5`

`b,`

`H(x)=M(x)+N(x)`

\(H(x)=(-3x^5+9x^4+6x-1)+(3x^5-9x^4+3x-5) \)

`H(x)=-3x^5+9x^4+6x-1+3x^5-9x^4+3x-5`

`H(x)=(-3x^5+3x^5)+(9x^4-9x^4)+(6x+3x)+(-1-5)`

`H(x)=9x-6`

 

`G(x)=M(x)-N(x)`

\(G(x)=(-3x^5+9x^4+6x-1)-(3x^5-9x^4+3x-5)\)

`G(x)=-3x^5+9x^4+6x-1-3x^5+9x^4-3x+5`

`G(x)=(-3x^5-3x^5)+(9x^4+9x^4)+(6x-3x)+(-1+5)`

`G(x)=-6x^5+18x^4+3x+4`

`c,`

`H(x)=9x-6`

Hệ số cao nhất của đa thức: `9`

Hệ số tự do: `-6`

`G(x)=-6x^5+18x^4+3x+4`

Hệ số cao nhất của đa thức: `-6`

Hệ số tự do: `4`

`d,`

`H(-1)=9*(-1)-6=-9-6=-15`

`H(1)=9*1-6=9-6=3`

`G(1)=-6*1^5+18*1^4+3*1+4`

`G(1)=-6+18+3+4=12+3+4=15+4=19`

`G(0)=-6*0^5+18*0^4+3*0+4=4`

`H(-3/2)=9*(-3/2)-6=-27/2-6=-39/2`

`e,`

Đặt `H(x)=9x-6=0`

`-> 9x=0+6`

`-> 9x=6`

`-> x=6 \div 9`

`-> x=2/3`

Vậy, nghiệm của đa thức là `x=2/3.`