Chứng tỏ tổng các số tự nhiên (aaa + bbb) chia hết cho 37
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 3 stn liên tiếp là: a;a+1;a+2
Ta có : a+a+1+a+2=3a+(1+2)=3a+3
Mà 3a chia hết cho 3 ; 3 chia hết cho 3
Nên 3a+3 chia hết cho 3
Vậy tổng 3 stn liên tiếp chia hết cho 3
Gọi 3 số tự nhiên liên tiếp đó lần lượt là a;a+1;a+2
ta có :a+(a+1)+(a+2)=3a +3=3.(a+1) chia hết cho3
Vậy 3 số tự nhiên liên tiếp chia hết cho 3
a) Ta có 111 chia hết cho 37 mà các số dạng aaa khi nào cũng chia hết cho 111 ⇒ Các số có dạng aaa luôn chia hết cho 37 (ĐPCM)
b) Ta có ab-ba=a.10+b-b.10-a=9.a-9.b=9.(a-b)
Vì 9 chia hết cho 9 ⇒ 9.(a-b) chia hết cho 9 ⇒ ab-ba bao giờ cũng chia hết cho 9 (ĐPCM)
c) Ta có 2 trường hợp n có hạng 2k hoặc 2k+1
+) Nếu n= 2k thì n+6 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
+) Nếu n= 2k+1 thì n+3 chia hết cho 2 ⇒ (n+3)(n+6) chia hết cho 2
⇒ (n+3)(n+6) chia hết cho 2 với mọi n là số tự nhiên
a) \(\overline{aaa}=100a+10a+a=111a\)
mà \(111=37.3⋮37\)
\(\Rightarrow\overline{aaa}⋮37\left(dpcm\right)\)
b) \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b=9\left(a-b\right)⋮9\left(a\ge b\right)\)
\(\Rightarrow dpcm\)
Gọi 4 stn liên tiếp là:a;a+1;a+2;a+3
Ta có: a+a+1+a+2+a+3=4a.(1+2+3)=4a.6
Mà 4a chia hết cho 4 ; 6 không chia hết cho 4
Nên 4a.6 không chia hết cho 4
Vậy tổng 4 stn liên tiếp ko chia hết cho 4
Gọi chung các số tự nhiên có 3 chữ số khác nhau là aaa.
Ta có:
aaa = a . 111 = a . ( 3 . 37) = 3a . 37 chia hết cho 37.
Vậy mọi số tự nhiên có 3chữ số giống nhau đều chia hết cho 37
Gọi 3 chữ số tự nhiên giống nhau là aaa
Ta có: aaa=a.111=a.373 chia hết cho 37
Suy ra: mọi số tự nhiên có 3 chữ số giống nhau đều chia hất cho 37
Ta có: aaa = 100.a + 10.a + a = (100 + 10 + 1).a = 111.a = 3.37.a ⋮ 37 (điều phải chứng minh)
aaa =111*a =37*3*a chia hết cho 37 (1)
bbb =111*b=37*3*b chia hết cho 37 (2)
Từ (1) & (2) suy ra aaa+bbb chia hết cho 37
gọi số tự nhiên có 3 chữ số giống nhau là aaa
Ta co : aaa=a.111=a.37.3 chia het cho 37
=> moi tu nhien co 3 chu so giong nhau luon chia het cho 37
****