tìm gtnn : x^2-2xy+2y^2-x+8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt t=x+y
x^2 +2xy+6x+6y+2y^2+8=0
x^2+2xy+y^2+6(x+y)+8= -y^2
(x+y)^2 + 6(x+y)+8 = -y^2
t^2 +6t +8= -y^2
(t+2)(t+4) = -y^2
do y^2 >=0 với mọi y
-y^2 <=0 với mọi y
t^2+6t+8<=0
(t+2)(t+4)<=0
* Trường hợp 1: t+2<=0 và t+4>=0 (1)
t<=-2 và t>=4
* trường hợp 2: t+2>=0 và t+4<=0 (2)
t>= -2 và t<= -4 ( vô nghiệm)
Từ (1), (2) ta có:
-4<= t <=-2
-4 <= x+y <= -2
-4 + 2016 <= x+y+ 2016 <= -2 +2016
2012 <= x+y +2016 <= 2014
Bmin= 2012
Bmax= 2014
*Bmin= 2012 khi x+y+2016 = 2012 và -y^2= 0
thì x=-4 và y=0
* Bmax= 2014 khi x+y+2016 = 2014 và -y^2= 0
thì x=-2 và y=0
vậy Bmin= 2012 khi (x,y) = (-4, 0)
Bmax= 2014 khi (x,y)= (-2,0)
`x^2-2xy+2y^2+2x-10+2038`
`=x^2-2xy+y^2+2(x-y)+y^2-8y+2038`
`=(x-y)^2+2(x-y)+1+y^2-8y+16+2021`
`=(x-y+1)^2+(y-4)^2+2021>=2021`
Dấu "=" `<=>` \(\begin{cases}y=4\\x=y-1=3\\\end{cases}\)
\(x^2-2xy+2y^2+2x-10y+2038=\left(x-y+1\right)^2+\left(y-4\right)^2+2021\ge2021\)
Dấu = xảy ra khi:
\(\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\)
=> x = 3 và y = 4
A=\(x^2+2y^2+7x+7y+12=x^2+2xy+y^2+7\left(x+y\right)+12+y^2\)
\(=\left(x+y\right)^2+2\dfrac{7}{2}\left(x+y\right)+\left(\dfrac{7}{2}\right)^2-\dfrac{1}{4}+y^2\)
\(=\left(x+y+\dfrac{7}{2}\right)^2+y^2-\dfrac{1}{4}\ge\dfrac{-1}{4}\)
Vậy Min A =\(\dfrac{-1}{4}\) .Dấu = xảy ra\(\left\{{}\begin{matrix}x+y+\dfrac{7}{2}=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-7}{2}\\y=0\end{matrix}\right.\)
Dat A=x2+2xy+y2-2x-2y=[(x+y)2-2(x+y)+1]-1>=-1
minA=-1 khi x+y=1
\(x^2+2y^2+2xy-6x-8y+2018\)
\(=x^2+y^2+9+2xy-6x-6y+y^2-2y+1+2008\)
\(=\left(3-x-y\right)^2+\left(y-1\right)^2+2008\) \(\ge2008\)
Dấu '=' xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}3-x-y=0\\y-1=0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Vậy Min P = 2008 <=> x=2; y=1
\(x^2-2xy+2y^2-x+8=\left(x-y-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{15}{2}\ge\frac{15}{2}\)
Dấu "=" xảy ra khi \(x=1,y=\frac{1}{2}\)