Cho x+y=2.Hãy chứng minh rằng xy<1
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
SK
0
NT
2
6 tháng 2 2017
cho x+y=2 và phải chứng minh rằng xy1 thì xy1=bao nhiêu thì mới chứng minh đc chứ
MT
13 tháng 3 2016
1)a+3>b+3
=>a>b
=>-2a<-2b
=>-2a+1<-2b+1
2)x>0;y<0 =>x2.y<0;x.y2>0
=>x2.y<0;-x.y2<0
=>x2y-xy2<0
13 tháng 3 2016
1.ta có a+3>b+3
suy ra -2a-6>-2b-6
=> (-2a-6)+5>(-2b-6)+5
=>-2a+1>-2b+1
2.vì x>0=> x^2>0 và y<0=>y^2>0
=> x^2*y<0 và x*y^2>0
=> x*y^2>x^2*y
=>x^2*y-x*y^2<0
TI
0
DT
1
21 tháng 11 2016
x+y=2
(x+y)^2=4
x^2+2xy+y^2=4
(x-y)^2=4-4xy=4(1-xy)
(x-y)^2 lon hon hoac=0
=> 4(1-xy)>=0
=> 1-xy>=0
=> xy<=1=> dpcm
LC
0
NV
0
Áp dụng bất đẳng thức cô si ta có
\(2\sqrt{xy}\le x+y\)
<=>\(2\sqrt{xy}\le2\)
<=>\(\sqrt{xy}\le1\)
<=>\(\left(\sqrt{xy}\right)^2\le1\)
<=>\(xy\le1\)
Dấu ''='' xảy ra <=>x=y=1
Theo giả thiết: x + y = 2 => y = 2 - x
Ta biến đổi tương đương:
* xy < 1
<=> 1 - xy > 0
<=> 1 - x.(2 - x) > 0
<=> 1 - 2x +x^2 > 0
<=> (1-x)^2 > 0
Biểu thức cuối cùng đúng
Quá trình biến đổi là tương đương nên biểu thức đầu xy < 1 là đúng.
Vậy: với x + y = 2 thì xy <1