K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2019

Ta có y ' = - 1 - m 2 - m - 1 x - 1 2  

Hàm số đã cho đồng biến trên từng khoảng - ∞ ; 1 và  1 ; + ∞  khi và chỉ khi

- m 2 - m - 2 > 0 ⇔ m 2 + m + 2 < 0 ⇔ m + 1 2 2 + 7 4 < 0 ⇔ m ∈ ∅

Đáp án D

6 tháng 6 2017

Đáp án A

Ta có  y ' = − m + 1 x − 1 2

hàm số đồng biến trên từng khoảng xác định của nó  ⇔ y ' > 0 ⇔ − m − 1 > 0 ⇔ m < − 1

y'= \(4x^3-4\left(m-1\right)x\)

Để hàm số đồng biến trên khoảng (1;3) thì \(y'\left(x\right)\ge0,\forall x\in\left(1;3\right)\)

\(\Leftrightarrow x^2-\left(m-1\right)\ge0,\forall x\in\left(1;3\right)\)

\(\Leftrightarrow m-1\le x^2,\forall x\in\left(1;3\right)\)

\(\Rightarrow m-1\le1\Leftrightarrow m\le2\)

Vậy \(m\in\) (−\(\infty\);2]

3 tháng 1 2018

Đáp án D

Ta có y ' = 1 − m x + 1 2  

Để hàm số đồng biến trên từng khoảng xác định

⇔ y ' > 0 , ∀ x ∈ D = ℝ \ ± 1 ⇒ 1 − m > 0 ⇔ m < 1

26 tháng 11 2018

Đáp án C

24 tháng 1 2019

Chọn C

1 tháng 10 2017

Đáp án A

 

.

7 tháng 4 2018

NV
22 tháng 6 2021

1.

\(y'=m-3cos3x\)

Hàm đồng biến trên R khi và chỉ khi \(m-3cos3x\ge0\) ; \(\forall x\)

\(\Leftrightarrow m\ge3cos3x\) ; \(\forall x\)

\(\Leftrightarrow m\ge\max\limits_{x\in R}\left(3cos3x\right)\)

\(\Leftrightarrow m\ge3\)

NV
22 tháng 6 2021

2.

\(y'=1-m.sinx\)

Hàm đồng biến trên R khi và chỉ khi:

\(1-m.sinx\ge0\) ; \(\forall x\)

\(\Leftrightarrow1\ge m.sinx\) ; \(\forall x\)

- Với \(m=0\) thỏa mãn

- Với \(m< 0\Rightarrow\dfrac{1}{m}\le sinx\Leftrightarrow\dfrac{1}{m}\le\min\limits_R\left(sinx\right)=-1\)

\(\Rightarrow m\ge-1\)

- Với \(m>0\Rightarrow\dfrac{1}{m}\ge sinx\Leftrightarrow\dfrac{1}{m}\ge\max\limits_R\left(sinx\right)=1\)

\(\Rightarrow m\le1\)

Kết hợp lại ta được: \(-1\le m\le1\)

31 tháng 1 2019

Đáp án C

Ta có y ' = m ( m + 1 ) ( m - x ) 2  Hàm số đồng biến trên khoảng xác định của nó  ⇔ m ( m + 1 ) > 0 ⇒ m > 0 m < - 1