K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2015

bài này dễ mà

Ta có: abc = 100.a + 10.b +c = n^2 - 1 (1)
cba = 100.c + 10.b + a = n^2- 4n + 4 (2)
Lấy (1) trừ (2) ta được:
99.(a – c) = 4n – 5
=> 4n - 5 chia hết 99
Vì 100 abc 999 nên:
100 n^2 -1 999 => 101 n^2 1000 => 11 31 => 39 4n - 5 119
Vì 4n - 5 chia hết 99 nên 4n - 5 = 99 => n = 26 => abc = 675
 

4 tháng 4 2016

Ta có: abc = 100.a + 10.b +c = n^2 - 1 (1)

cba = 100.c + 10.b + a = n^2- 4n + 4 (2)

Lấy (1) trừ (2) ta được: 99.(a – c) = 4n – 5

Suy ra 4n - 5 chia hết 99

Vì 100 abc 999 nên:

100 ≤ n^2 -1 999 => 101 n^2 1000 => 11 31 => 39 4n - 5 119

Vì 4n - 5 chia hết cho 119 nên 4n - 5 = 99 => n = 26 => abc = 675

4 tháng 4 2016

là 675 nha bạn

5 tháng 6 2017

Ta có :

abc = 100a + 10b + c = n2 - 1 (1)

cba = 100c + 10b + c = (n - 2)2 (2)

Lấy (2) trừ (1) ta được:

99(a - c) = 4n - 5

=> 4n - 5 \(⋮\)99

Lại có: 100 \(\le\)n2 - 1 \(\le\)999

<=> 101 \(\le\)n2 \(\le\)1000

<=> 11 \(\le\)\(\le\)31

<=> 44 \(\le\)4n \(\le\)124

<=> 39 \(\le\)4n - 5 \(\le\)119

Mà 4n - 5 \(⋮\)99

=> 4n - 5 = 99

=> n = 26

=> abc = 262 - 1 = 675

Vậy abc = 675

29 tháng 2 2016

abc = 675 nha vào chtt tham khảo đó

duyệt đi

13 tháng 1 2015
Giả sử n^2 + 2006 là số chính phuơng thì có thể viết đựoc

dưới dạng n^2 + 2006 = k^2 ( k là số nguyên dương)

<=> 2006 = k^2 - n^2

<=> (k-n)(k+n) = 2006 => (k-n);(k+n) là các ước dương của 2006

n + k 1 2006 2 1003 17 118 59 34
k - n 2006 1 1003 2 118 17 34 59

giải lần lượt như toán tổng hiệu ý

Kết quả không cho số n nào nguyên cả

vì vậy không tồn tại n để n^2 + 2006 là số chính phương