cho n la so tu nhien .Chung minh rang n[n+1][n+2] chia het cho 6
Nho neu gio cach lam ai lam dung toi LI KE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: (n+3) (n+6) (1)
Ta xét 2 trường hợp:
+Nếu n là lẻ thì n+3 là chẵn, n+6 là lẻ. Tích giữa 1 số chẵn và 1 số lẻ là số chẵn => (n+3) (n+6) chia hết cho 2.
+Nếu n là chẵn thì n+3 là lẻ, n+6 là chẵn. Tích giữa 1 số lẻ và 1 số chẵn là số chẵn => (n+3) (n+6) chia hết cho 2.
Vậy với mọi số tự nhiên n thì tích (n+3) (n+6) chia hết cho 2.
a) Ta có :
\(n+5⋮n+2\)
Mà \(n+2⋮n+2\)
\(\Leftrightarrow3⋮n+2\)
Vì \(n\in N\Leftrightarrow n+2\in N;n+2\inƯ\left(3\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+2=1\Leftrightarrow n=-1\left(loại\right)\\n+1=3\Leftrightarrow n=2\left(tm\right)\end{matrix}\right.\)
Vậy ....
b) Ta có :
\(4n+9⋮n+1\)
Mà \(n+1⋮n+1\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n+9⋮n+1\\4n+4⋮n+1\end{matrix}\right.\)
\(\Leftrightarrow5⋮n+1\)
Vì \(n\in N\Leftrightarrow n+1\in N;n+1\inƯ\left(5\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}n+1=1\Leftrightarrow n=0\\n+1=5\Leftrightarrow n=4\end{matrix}\right.\)
Vậy ....
Giải :
Vì n thuộc N và n > 1
Ta có : n( n + 1 ) ( n + 2 ) = n ( n2- 1 ) = n2 . n - 1 . n = n3 - n
=) n3 - n = n( n + 1 ) ( n + 2 ) : hết cho 6 với mọi n thuộc N và n > 1 thì n( n + 1 ) ( n + 2 ) là tích của ba số tự nhiên liên tiếp
Do đó n( n + 1 ) ( n + 2 ) : hết cho 6 với mọi n thuộc N và n > 1
Vậy với n thuộc N , n > 1 thì n( n + 1 ) ( n + 2 ) : hết cho 6
Ta xét theo 2 trường hợp của n:
- Chia hết cho 2
+ Nếu n chẵn =>n sẽ chia hết cho 2
=>n.(n+1).(n+2) sẽ chia hết cho 2
+Nếu n lẻ =>n+1 sẽ chẵn và n+1 chia hết cho 2
=>n.(n+1).(n+2) sẽ chia hết cho 2
- Chia hết cho 3
+ Nếu n =3a=>n chia het cho 3=>n.(n+1).(n+2) chia hết cho 3
+Nếu n=3k+1 => n+2 sẽ chia hết cho 3 => n.(n+1).(n+2) chia hết cho 3
+Nếu n=3k+2=> n+1 chia hết cho 3=> n.(n+1).(n+2) chia hết cho 3
Từ đó suy ra, n.(n+1).(n+2) chia hết cho cả 2 và 3 , mà đã chia hết cho 2 và 3 sẽ chia hết cho 6.
Kết luận...
tick nha
Ta thấy n.(n+1) là 2 số tự nhiên liên tiếp => n.(n+1)\(⋮\)2
n.(n+1).(n+2) là 3 số tự nhiên liên tiếp=> n.(n+1).(n+2)\(⋮\)3
=> n.(n+1).(n+2) chia hết cho 6
n2 + n + 1
= n . n + n + 1
= n . ( n + 1 ) + 1
Do n . ( n + 1 ) là hai số liên tiếp => có tận cùng là : 0;2;6
=> n . ( n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7 không chia hết cho 2
Vậy n2.n+1 không chia hết cho 2
Vì đây là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho và có ít nhất 1 số chia hết cho 2 => tích đó chia hết cho cả 3 và 2 => tích chia hết cho BCNN(2; 3) = 6